Is There an Optimal Ischemic-Preconditioning Dose to Improve Cycling Performance?

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Introduction: Ischemic preconditioning (IPC) may enhance endurance performance. No previous study has directly compared distinct IPC protocols for optimal benefit. Purpose: To determine whether a specific IPC protocol (ie, number of cycles, amount of muscle tissue, and local vs remote occlusion) elicits greater performance outcomes. Methods: Twelve cyclists performed 5 different IPC protocols 30 min before a blinded 375-kJ cycling time trial (TT) in a laboratory. Responses to traditional IPC (4 × 5-min legs) were compared with those to 8 × 5-min legs and sham (dose cycles), 4 × 5-min unilateral legs (dose tissue), and 4 × 5-min arms (remote). Rating of perceived exertion and blood lactate were recorded at each 25% TT completion. Power (W), heart rate (beats/min), and oxygen uptake (V˙O2) (mL · kg−1 · min−1) were measured continuously throughout TTs. Magnitude-based-inference statistics were employed to compare variable differences to the minimal practically important difference. Results: Traditional IPC was associated with a 17-s (0, 34) faster TT time than sham. Applying more dose cycles (8 × 5 min) had no impact on performance. Traditional IPC was associated with likely trivial higher blood lactate and possibly beneficial lower V˙O2 responses vs sham. Unilateral IPC was associated with 18-s (−11, 48) slower performance than bilateral (dose tissue). TT times after remote and local IPC were not different (0 [−16, 16] s). Conclusion: The traditional 4 × 5-min (local or remote) IPC stimulus resulted in the fastest TT time compared with sham; there was no benefit of applying a greater number of cycles or employing unilateral IPC.

Cocking, Wilson, and Nichols are with the Athlete Health and Performance Research Center, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar. Cable is with the Dept of Sports Science, Aspire Academy, Doha, Qatar. Green, Thijssen, and Jones are with the Research Inst for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom.

Jones (h.jones1@ljmu.ac.uk) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Murry CEJennings RBReimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):11241136. PubMed doi:10.1161/01.CIR.74.5.1124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Pang CYYang RZZhong AXu NBoyd BForrest CR. Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res. 1995;29(6):782788. PubMed doi:10.1016/S0008-6363(96)88613-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kraemer RLorenzen JKabbani Met al. Acute effects of remote ischemic preconditioning on cutaneous microcirculation—a controlled prospective cohort study. BMC Surg. 2011;11(1):32. PubMed doi:10.1186/1471-2482-11-32

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    de Groot PCEThijssen DHJSanchez MEllenkamp RHopman MTE. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol. 2010;108(1):141146. PubMed doi:10.1007/s00421-009-1195-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Meng RAsmaro KMeng Let al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012;79(18):18531861. PubMed doi:10.1212/WNL.0b013e318271f76a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Jones HHopkins NBailey TGGreen DJCable NTThijssen DH. Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans. Am J Hypertens. 2014;27(7):918925. PubMed doi:10.1093/ajh/hpu004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Whittaker PPrzyklenk K. From ischemic conditioning to “hyperconditioning”: clinical phenomenon and basic science opportunity. Dose-Response. 2014;12(4):650663. PubMed doi:10.2203/dose-response.14-035.Whittaker

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kraus ASPasha EPMachin DRAlkatan MKloner RATanaka H. Bilateral upper limb remote ischemic preconditioning improves anaerobic power. Open Sports Med J. 2015;9(1). http://benthamopen.com/ABSTRACT/TOSMJ-9-1. Accessed September 3 2015.

    • Search Google Scholar
    • Export Citation
  • 9.

    Bailey TGJones HGregson WAtkinson GCable NTThijssen DH. Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc. 2012;44(11):20842089. PubMed doi:10.1249/MSS.0b013e318262cb17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Barbosa TCMachado ACBraz IDet al. Remote ischemic preconditioning delays fatigue development during handgrip exercise: RIPC improves handgrip performance. Scand J Med Sci Sports. 2015;25(3):356364. PubMed doi:10.1111/sms.12229

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Przyklenk KBauer BOvize MKloner RAWhittaker P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87(3):893899. PubMed doi:10.1161/01.CIR.87.3.893

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Salvador AFDe Aguiar RALisbôa FDPereira KLCruz RSCaputo F. Ischemic preconditioning and exercise performance: a systematic review and meta-analysis. Int J Sports Physiol Perform. 2016;11(1):414. PubMed doi:10.1123/ijspp.2015-0204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jeukendrup ASaris WHBrouns FKester AD. A new validated endurance performance test. Med Sci Sports Exerc. 1996;28(2):266270. PubMed doi:10.1097/00005768-199602000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Sharma VCunniffe BVerma APCardinale MYellon D. Characterization of acute ischemia-related physiological responses associated with remote ischemic preconditioning: a randomized controlled, crossover human study. Physiol Rep. 2014;2(11):12200. PubMed doi:10.14814/phy2.12200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ferreira-Valente MAPais-Ribeiro JLJensen MP. Validity of four pain intensity rating scales. Pain. 2011;152(10):23992404. PubMed doi:10.1016/j.pain.2011.07.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Perneger TV. What’s wrong with Bonferroni adjustments. BMJ. 1998;316(7139):12361238. PubMed doi:10.1136/bmj.316.7139.1236

  • 17.

    Batterham AMHopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed doi:10.1123/ijspp.1.1.50

  • 18.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Reprint. New York, NY: Psychology Press; 2009

  • 19.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Jean-St-Michel EManlhiot CLi Jet al. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc. 2011;43(7):12801286. PubMed doi:10.1249/MSS.0b013e318206845d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cruz RS de Ode Aguiar RATurnes TPereira KLCaputo F. Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol. 2015;119(9):961967. PubMed doi:10.1152/japplphysiol.00498.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Patterson SDBezodis NEGlaister MPattison JR. The effect of ischemic preconditioning on repeated sprint cycling performance. Med Sci Sports Exerc. 2015;47(8):16521658. PubMed doi:10.1249/MSS.0000000000000576

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kjeld TRasmussen MRJattu TNielsen HBSecher NH. Ischemic preconditioning of one forearm enhances static and dynamic apnea. Med Sci Sports Exerc. 2014;46(1):151155. PubMed doi:10.1249/MSS.0b013e3182a4090a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Paixão Rda Mota GMarocolo M. Acute effect of ischemic preconditioning is detrimental to anaerobic performance in cyclists. Int J Sports Med. 2014;35(11):912915. doi:10.1055/s-0034-1372628

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ferreira TNSabino-Carvalho JLLopes TRet al. Ischemic preconditioning and repeated sprint swimming: a placebo and nocebo study. Med Sci Sports Exerc. 2016;48(10):19671975. PubMed doi:10.1249/MSS.0000000000000977

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lisbôa FDTurnes TCruz RSORaimundo JAGPereira GSCaputo F. The time dependence of the effect of ischemic preconditioning on successive sprint swimming performance. J Sci Med Sport. 2017;20(5):507511. PubMed doi:10.1016/j.jsams.2016.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hittinger EAMaher JLNash MSet al. Ischemic preconditioning does not improve peak exercise capacity at sea level or simulated high altitude in trained male cyclists. Appl Physiol Nutr Metab. 2015;40(1):6571. PubMed doi:10.1139/apnm-2014-0080

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Johnsen JPryds KSalman RLøfgren BKristiansen SBBøtker HE. The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection. Basic Res Cardiol. 2016;111(2):10. PubMed doi:10.1007/s00395-016-0529-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Crisafulli ATangianu FTocco Fet al. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J Appl Physiol. 2011;111(2):530536. PubMed doi:10.1152/japplphysiol.00266.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kido KSuga TTanaka Det al. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep. 2015;3(5):e12395. PubMed doi:10.14814/phy2.12395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cruz RSDOde Aguiar RATurnes TSalvador AFCaputo F. Effects of ischemic preconditioning on short-duration cycling performance. Appl Physiol Nutr Metab. 2016;41(8):825831. PubMed doi:10.1139/apnm-2015-0646

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    McMahon NFLeveritt MDPavey TG. The effect of dietary nitrate supplementation on endurance exercise performance in healthy adults: a systematic review and meta-analysis. Sports Med. 2017;47(4):735756. PubMed doi:10.1007/s40279-016-0617-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 116 116 40
Full Text Views 8 8 1
PDF Downloads 5 5 0
Altmetric Badge
PubMed
Google Scholar
Cited By