Racing an Opponent: Alteration of Pacing, Performance, and Muscle-Force Decline but Not Rating of Perceived Exertion

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Performing against a virtual opponent has been shown to invite a change in pacing and improve time-trial (TT) performance. This study explored how this performance improvement is established by assessing changes in pacing, neuromuscular function, and perceived exertion. Methods: After a peak-power-output test and a familiarization TT, 12 trained cyclists completed two 4-km TTs in randomized order on a Velotron cycle ergometer. TT conditions were riding alone (NO) and riding against a virtual opponent (OP). Knee-extensor performance was quantified before and directly after the TT using maximal voluntary contraction force (MVC), voluntary activation (VA), and potentiated doublet-twitch force (PT). Differences between the experimental conditions were examined using repeated-measures ANOVAs. Linear-regression analyses were conducted to associate changes in pacing to changes in MVC, VA, and PT. Results: OP was completed faster than NO (mean power output OP 289.6 ± 56.1 vs NO 272.2 ± 61.6 W; P = .020), mainly due to a faster initial pace. This was accompanied by a greater decline in MVC (MVC pre vs post −17.5% ± 12.4% vs −11.4% ± 10.9%, P = .032) and PT (PT pre vs post −23.1% ± 14.0% vs −16.2% ±11.4%, P = .041) after OP than after NO. No difference between conditions was found for VA (VA pre vs post −4.9% ± 6.7% vs −3.4% ± 5.0%, P = .274). Rating of perceived exertion did not differ between OP and NO. Conclusion: The improved performance when racing against a virtual opponent was associated with a greater decline in voluntary and evoked muscle force than riding alone, without a change in perceived exertion, highlighting the importance of human–environment interactions in addition to one’s internal state for pacing regulation and performance.

Konings, Parkinson, and Hettinga are with the School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, United Kingdom. Zijdewind is with the Dept of Neuroscience, University Medical Center Groningen, Groningen, the Netherlands.

Hettinga (fjhett@essex.ac.uk) is corresponding author.
  • 1.

    Edwards AM, Polman RC. Pacing and awareness: brain regulation of physical activity. Sport Med. 2013;43(11):1057–1064. doi:10.1007/s40279-013-0091-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Smits BL, Pepping GJ, Hettinga FJ. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity. Sport Med. 2014;44(6):763–775. doi:10.1007/s40279-014-0163-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ulmer H. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52(5):416–420. PubMed doi:10.1007/BF01919309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Foster C, Hendrickson K, Peyer K, et al. Pattern of developing the performance template. Br J Sports Med. 2009;43(10):765–769. PubMed doi:10.1136/bjsm.2008.054841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hettinga FJ, Konings MJ, Pepping GJ. The science of racing against opponents: affordance competition and the regulation of exercise intensity in head-to-head competition. Front Physiol. 2017;8:118. PubMed doi:10.3389/fphys.2017.00118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Corbett J, Barwood MJ, Ouzounoglou A, Thelwell R, Dicks M. Influence of competition on performance and pacing during cycling exercise. Med Sci Sports Exerc. 2012;44(3):509–515. PubMed doi:10.1249/MSS.0b013e31823378b1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Konings MJ, Schoenmakers PP, Walker A, Hettinga FJ. The behavior of an opponent alters pacing decisions in 4-km cycling time trials. Physiol Behav. 2016;158(1):1–5. doi:10.1016/j.physbeh.2016.02.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Williams EL, Jones HS, Sparks SA, Marchant DC, Midgley AW, McNaughton LR. Competitor presence reduces internal attentional focus and improves 16.1 km cycling time trial performance. J Sci Med Sport. 2015;18(4):486–491. PubMed doi:10.1016/j.jsams.2014.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Williams EL, Jones HS, Sparks SA, et al. Altered psychological responses to different magnitudes of deception during cycling. Med Sci Sports Exerc. 2015;47(11):2423–2430. PubMed doi:10.1249/MSS.0000000000000694

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jones HS, Williams EL, Marchant DC, et al. Deception has no acute or residual effect on cycling time trial performance but negatively effects perceptual responses. J Sci Med Sport. 2016;19(9):771–776. PubMed doi:10.1016/j.jsams.2015.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    McCormick A, Meijen C, Marcora SM. Psychological determinants of whole-body endurance performance. Sport Med. 2015;45(7):997–1015. doi:10.1007/s40279-015-0319-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Cardinal BJ, Esters J, Cardinal MK. Evaluation of the revised physical activity readiness questionnaire in older adults. Med Sci Sports Exerc. 1996;28(4):468–472. PubMed doi:10.1097/00005768-199604000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Brisswalter J, Bieuzen F, Giacomoni M, Tricot V, Falgairette G. Morning to evening differences in oxygen uptake kinetics in short duration cycling exercise. Chronobiol Int. 2007;24:495–506.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fernandes AL, Lopes-Silva JP, Bertuzzi RC, et al. Effect of time of day on performance, hormonal and metabolic response during a 1000-m cycling time trial. PLoS ONE. 2014;9(10):109954. PubMed doi:10.1371/journal.pone.0109954

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Corbett J, Barwood MJ, Parkhouse K. Effect of task familiarisation on distribution of energy during a 2000 m cycling time trial. Br J Sports Med. 2009;43(10):770–774. PubMed doi:10.1136/bjsm.2008.056416

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Astorino T, Cottrell T. Reliability and validity of the Velotron Racermate cycle ergometer to measure anaerobic power. Int J Sports Physiol Perform. 2012;33(3):205–210.

    • Search Google Scholar
    • Export Citation
  • 17.

    Borg GA. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998.

  • 18.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):1725–1789. PubMed doi:10.1111/j.1469-7793.2000.t01-1-00125.xm

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Merton P. Voluntary strength and fatigue. J Physiol. 1954;123(3):553–564. PubMed doi:10.1113/jphysiol.1954.sp005070

  • 20.

    Stoter IK, MacIntosh BR, Fletcher JR, Pootz S, Zijdewind I, Hettinga FJ. Pacing strategy, muscle fatigue, and technique in 1500-m speed-skating and cycling time trials. Int J Sports Physiol Perform. 2016;11(3):337–343. PubMed doi:10.1123/ijspp.2014-0603

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Thomas K, Goodall S, Stone MR, Howatson G, St Clair Gibson A, Ansley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc. 2015;47(3):537–546. PubMed doi:10.1249/MSS.0000000000000448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Froyd C, Millet GY, Noakes TD. The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise. J Physiol. 2013;591(5):1339–1346. PubMed doi:10.1113/jphysiol.2012.245316

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    De Pauw K, Roelands B, De Geus B, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111–122. PubMed doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Brick NE, Campbell MJ, Metcalfe RS, Mair JL, MacIntyre TE. Altering pace control and pace regulation: attentional focus effects during running. Med Sci Sports Exerc. 2016;48:879–886. doi:10.1249/MSS.0000000000000843

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hulleman M, De Koning JJ, Hettinga FJ, Foster C. The effect of extrinsic motivation on cycle time trial performance. Med Sci Sports Exerc. 2007;39(4):709–715. PubMed doi:10.1249/mss.0b013e31802eff36

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):2228–2238. PubMed doi:10.1249/MSS.0000000000000929

  • 27.

    Swart J, Lamberts RP, Lambert MI, et al. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint. Br J Sports Med. 2009;43:775–781. PubMed doi:10.1136/bjsm.2008.056036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Roelands B, De Koning JJ, Foster C, Hettinga FJ, Meeusen R. Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing. Sport Med. 2013;43(5):301–311. doi:10.1007/s40279-013-0030-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161–173. PubMed doi:10.1113/jphysiol.2007.141838

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sidhu SK, Weavil JC, Mangum TS, et al. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Clin Neurophysiol. 2017;128(1):44–55. PubMed doi:10.1016/j.clinph.2016.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Noorbergen OS, Konings MJ, Elferink-Gemser MT, Micklewright D, Hettinga FJ. Pacing behavior and tactical positioning in 500- and 1000-m short-track speed skating. Int J Sports Physiol Perform. 2016;11(6):742–748. PubMed doi:10.1123/ijspp.2015-0384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Konings MJ, Noorbergen OS, Parry D, Hettinga FJ. Pacing behavior and tactical positioning in 1500-m short-track speed skating. Int J Sports Physiol Perform. 2016;11(1):122–129. PubMed doi:10.1123/ijspp.2015-0137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Thomas K, Elmeua M, Howatson G, Goodall S. Intensity-dependent contribution of neuromuscular fatigue after constant-load cycling. Med Sci Sports Exerc. 2016;48(9):1751–1760. PubMed doi:10.1249/MSS.0000000000000950

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Froyd C, Beltrami FG, Millet GY, Noakes TD. Central regulation and neuromuscular fatigue during exercise of different durations. Med Sci Sports Exerc. 2016;48(6):1024–1032. PubMed doi:10.1249/MSS.0000000000000867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    MacIntosh BR, Shahi MRS. A peripheral governor regulates muscle contraction. Appl Physiol Nutr Metab. 2011;36(1):1–11. PubMed doi:10.1139/H10-073

  • 36.

    Behm D, Whittle J, Button D, Power K. Intermuscle differences in activation. Muscle Nerve. 2002;25(2):236–243. PubMed doi:10.1002/mus.10008

All Time Past Year Past 30 Days
Abstract Views 53 53 16
Full Text Views 5 5 0
PDF Downloads 3 3 0