Selective Changes in the Mechanical Capacities of Lower-Body Muscles After Cycle-Ergometer Sprint Training Against Heavy and Light Resistances

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To explore the feasibility of the linear force–velocity (F–V) modeling approach to detect selective changes of F–V parameters (ie, maximum force [F0], maximum velocity [V0], F–V slope [a], and maximum power [P0]) after a sprint-training program. Methods: Twenty-seven men were randomly assigned to a heavy-load group (HLG), light-load group (LLG), or control group (CG). The training sessions (6 wk × 2 sessions/wk) comprised performing 8 maximal-effort sprints against either heavy (HLG) or light (LLG) resistances in leg cycle-ergometer exercise. Pre- and posttest consisted of the same task performed against 4 different resistances that enabled the determination of the F–V parameters through the application of the multiple-point method (4 resistances used for the F–V modeling) and the recently proposed 2-point method (only the 2 most distinctive resistances used). Results: Both the multiple-point and the 2-point methods revealed high reliability (all coefficients of variation <5% and intraclass correlation coefficients >.80) while also being able to detect the group-specific training-related changes. Large increments of F0, a, and P0 were observed in HLG compared with LLG and CG (effect size [ES] = 1.29–2.02). Moderate increments of V0 were observed in LLG compared with HLG and CG (ES = 0.87–1.15). Conclusions: Short-term sprint training on a leg cycle ergometer induces specific changes in F–V parameters that can be accurately monitored by applying just 2 distinctive resistances during routine testing.

García-Ramos, Torrejón, Pérez-Castilla, and Morales-Artacho are with the Dept of Physical Education and Sport, University of Granada, Granada, Spain. García-Ramos is also with the Faculty of Education, Catholic University of the Most Holy Conception, Concepción, Chile. Jaric is with the Dept of Kinesiology and Applied Physiology, University of Delaware, Newark, DE.

García-Ramos (amagr@ugr.es) is corresponding author.
  • 1.

    Behm DG, Sale DG. Velocity specificity of resistance training. Sports Med. 1993;15:374–388. PubMed doi:10.2165/00007256-199315060-00003

  • 2.

    McBride JM, Triplett-McBride T, Davie A, Newton RU. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002;16:75–82. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force–velocity profiling during jumping. Front Physiol. 2017;7:677.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Markovic G, Vuk S, Jaric S. Effects of jump training with negative versus positive loading on jumping mechanics. Int J Sports Med. 2011;32:365–372. PubMed doi:10.1055/s-0031-1271678

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cormie P, McCaulley GO, McBride JM. Power versus strength-power jump squat training: influence on the load–power relationship. Med Sci Sports Exerc. 2007;39:996–1003. doi:10.1097/mss.0b013e3180408e0c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Haff GG, Nimphius S. Training principles for power. Strength Cond J. 2012;34:2–12. doi:10.1519/SSC.0b013e31826db467

  • 7.

    Jaric S. Force–velocity relationship of muscles performing multi-joint maximum performance tasks. Int J Sports Med. 2015;36:699–704. PubMed doi:10.1055/s-0035-1547283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Jaric S. Two-load method for distinguishing between muscle force, velocity, and power-producing capacities. Sports Med. 2016;46:1585–1589. PubMed doi:10.1007/s40279-016-0531-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42:1582–1598. PubMed doi:10.1249/MSS.0b013e3181d2013a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Zivkovic MZ, Djuric S, Cuk I, Suzovic D, Jaric S. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks. J Sports Sci. 2017;35:1287–1293. PubMed doi:10.1080/02640414.2016.1221521

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Giroux C, Rabita G, Chollet D, Guilhem G. What is the best method for assessing lower limb force–velocity relationship? Int J Sports Med. 2014;36:143–149. PubMed doi:10.1055/s-0034-1385886

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jaafar H, Attiogbe E, Rouis M, Vandewalle H, Driss T. Reliability of force–velocity tests in cycling and cranking exercises in men and women. Biomed Res Int. 2015;2015:1–12. PubMed doi:10.1155/2015/954780

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Sreckovic S, Cuk I, Djuric S, Nedeljkovic A, Mirkov D, Jaric S. Evaluation of force–velocity and power–velocity relationship of arm muscles. Eur J Appl Physiol. 2015;115:1779–1787. PubMed doi:10.1007/s00421-015-3165-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Garcia-Ramos A, Jaric S, Padial P, Feriche B. Force–velocity relationship of upper-body muscles: traditional vs. ballistic bench press. J Appl Biomech. 2016;32:178–185. PubMed doi:10.1123/jab.2015-0162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Feeney D, Stanhope SJ, Kaminski TW, Machi A, Jaric S. Loaded vertical jumping: force–velocity relationship, work, and power. J Appl Biomech. 2016;32:120–127. PubMed doi:10.1123/jab.2015-0136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cuk I, Markovic M, Nedeljkovic A, Ugarkovic D, Kukolj M, Jaric S. Force–velocity relationship of leg extensors obtained from loaded and unloaded vertical jumps. Eur J Appl Physiol. 2014;114:1703–1714. PubMed doi:10.1007/s00421-014-2901-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force–velocity profile in ballistic movements—altius: citius or rortius? Med Sci Sports Exerc. 2012;44:313–322. PubMed doi:10.1249/MSS.0b013e31822d757a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force–velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35:505–510. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Jiménez-Reyes P, Samozino P, Cuadrado-Peñafiel V, Conceição F, González-Badillo JJ, Morin JB. Effect of countermovement on power-force-velocity profile. Eur J Appl Physiol. 2014;114:2281–2288. doi:10.1007/s00421-014-2947-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11:267–272. PubMed doi:10.1123/ijspp.2015-0638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Djuric S, Cuk I, Sreckovic S, Mirkov D, Nedeljkovic A, Jaric S. Selective effects of training against weight and inertia on muscle mechanical properties. Int J Sports Physiol Perform. 2016;11:927–932. PubMed doi:10.1123/ijspp.2015-0527

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Dorel S, Couturier A, Lacour JR, Vandewalle H, Hautier C, Hug F. Force–velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis. Med Sci Sports Exerc. 2010;42:1174–1183. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Randell AD, Cronin JB, Keogh JW, Gill ND, Pedersen MC. Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. J Strength Cond Res. 2011;25:87–93. PubMed doi:10.1519/JSC.0b013e3181fee634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Driss T, Vandewalle H. The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review. Biomed Res Int. 2013;2013:1–40. PubMed doi:10.1155/2013/589361

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kaneko M, Fuchimoto T, Toji H, Suei K. Training effect of different loads on the force–velocity relationship and mechanical power output in human muscle. Scand J Sports Sci. 1983;5:50–55.

    • Search Google Scholar
    • Export Citation
  • 27.

    Cormie P, Flanagan SP. Does an optimal load exist for power training? Strength Cond J. 2008;30:67–69. doi:10.1519/SSC.0b013e31816a8776

  • 28.

    Jones DA, Rutherford OM, Parker DF. Physiological changes in skeletal muscle as a result of strength training. Q J Exp Physiol. 1989;74:233–256. PubMed doi:10.1113/expphysiol.1989.sp003268

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 62 62 5
Full Text Views 7 7 0
PDF Downloads 1 1 0