Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To compare relative and absolute speed and metabolic thresholds for quantifying match output in elite rugby league. Methods: Twenty-six professional players competing in the National Rugby League were monitored with global positioning systems (GPS) across a rugby-league season. Absolute speed (moderate-intensity running [MIRTh > 3.6 m/s] and high-intensity running [HIRTh > 5.2 m/s]) and metabolic (>20 W/kg) thresholds were compared with individualized ventilatory (first [VT1IFT] and second [VT2IFT]) thresholds estimated from the 30-15 Intermittent Fitness Test (30-15IFT), as well as the metabolic threshold associated with VT2IFT (HPmetVT2), to examine difference in match-play demands. Results: VT2IFT mean values represent 146%, 138%, 167%, and 144% increases in the HIR dose across adjustables, edge forwards, middle forwards, and outside backs, respectively. Distance covered above VT2IFT was almost certainly greater (ES range = 0.79–1.03) than absolute thresholds across all positions. Trivial to small differences were observed between VT1IFT and MIRTh, while small to moderate differences were reported between HPmetVT2 and HPmetTh. Conclusions: These results reveal that the speed at which players begin to run at higher intensities depends on individual capacities and attributes. As such, using absolute HIR speed thresholds underestimates the physical HIR load. Moreover, absolute MIR and high metabolic thresholds may over- or underestimate the work undertaken above these thresholds depending on the respective fitness of the individual. Therefore, using relative thresholds enables better prescription and monitoring of external training loads based on measured individual physical capacities.

T.J. Scott is with the Inst of Sport, Exercise and Active Living (ISEAL), Victoria University, Footscray, VIC, Australia. Thornton and Dascombe are with the Dept of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Bundoora, VIC, Australia. M.T.U. Scott is with the Performance Sciences Dept, Brisbane Broncos Rugby League Club, Red Hill, QLD, Australia. Duthie is with the School of Exercise Science, Australian Catholic University, Strathfield, NSW, Australia.

T.J. Scott (TannathS@broncos.com.au) is corresponding author.
  • 1.

    Scott MT, Scott TJ, Kelly VG. The validity and reliability of global positioning systems in team sport: a brief review. J Strength Cond Res. 2016;30(5):1470–1490. PubMed doi:10.1519/JSC.0000000000001221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Austin DJ, Gabbett TJ, Jenkins DJ. Repeated high-intensity exercise in a professional rugby league. J Strength Cond Res. 2011;25(7):1898–1904. PubMed doi:10.1519/JSC.0b013e3181e83a5b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Kempton T, Sirotic AC, Rampinini E, Coutts AJ. Metabolic power demands of rugby league match play. Int J Sports Physiol Perform. 2015;10(1):23–28. PubMed doi:10.1123/ijspp.2013-0540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    McLellan CP, Lovell DI. Performance analysis of professional, semiprofessional, and junior elite rugby league match-play using global positioning systems. J Strength Cond Res. 2013;27(12):3266–3274. PubMed doi:10.1519/JSC.0b013e31828f1d74

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sirotic AC, Coutts AJ, Knowles H, Catterick C. A comparison of match demands between elite and semi-elite rugby league competition. J Sports Sci. 2009;27(3):203–211. PubMed doi:10.1080/02640410802520802

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Austin DJ, Kelly SJ. Professional rugby league positional match-play analysis through the use of global positioning system. J Strength Cond Res. 2014;28(1):187–193. PubMed doi:10.1519/JSC.0b013e318295d324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Scott TJ, Duthie GM, Delaney JA, et al. The validity and contributing physiological factors to 30-15 Intermittent Fitness Test performance in rugby league. J Strength Cond Res. 2017;31:2409–2416. doi:10.1519/JSC.0000000000001702

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gabbett TJ, Jenkins DG, Abernethy B. Physical demands of professional rugby league training and competition using microtechnology. J Sci Med Sport. 2012;15(1):80–86. PubMed doi:10.1016/j.jsams.2011.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    di Prampero PE, Fusi S, Sepulcri L, Morin JB, Belli A, Antonutto G. Sprint running: a new energetic approach. J Exp Biol. 2005;208:2809–2816. PubMed doi:10.1242/jeb.01700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170–178. PubMed doi:10.1249/MSS.0b013e3181ae5cfd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Furlan N, Waldron M, Shorter K, et al. Running-intensity fluctuations in elite rugby sevens performance. Int J Sports Physiol Perform. 2015;10(6):802–807. PubMed doi:10.1123/ijspp.2014-0315

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Coutts AJ, Kempton T, Sullivan C, Bilsborough J, Cordy J, Rampinini E. Metabolic power and energetic costs of professional Australian football match-play. J Sci Med Sport. 2015;18(2):219–224. PubMed doi:10.1016/j.jsams.2014.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Delaney JA, Duthie GM, Thornton HR, Scott TJ, Gay D, Dascombe BJ. Acceleration-based running intensities of professional rugby league match play. Int J Sports Physiol Perform. 2016;11(6):802–809. doi:10.1123/ijspp.2015-0424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Abt G, Lovell R. The use of individualized speed and intensity thresholds for determining the distance run at high-intensity in professional soccer. J Sports Sci. 2009;27(9):893–898. PubMed doi:10.1080/02640410902998239

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Clarke AC, Anson J, Pyne D. Physiologically based GPS speed zones for evaluating running demands in women’s rugby sevens. J Sports Sci. 2015;33(11):1101–1108. PubMed doi:10.1080/02640414.2014.988740

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gabbett TJ. Use of relative speed zones increases the high-speed running performed in team sport match play. J Strength Cond Res. 2015;29(12):3353–3359. PubMed doi:10.1519/JSC.0000000000001016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Buchheit M. The 30–15 Intermittent Fitness Test: accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res. 2008;22(2):365–374. PubMed doi:10.1519/JSC.0b013e3181635b2e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Buchheit M, Al Haddad H, Millet GP, Lepretre PM, Newton M, Ahmaidi S. Cardiorespiratory and cardiac autonomic responses to 30–15 Intermittent Fitness Test in team sport players. J Strength Cond Res. 2009;23(1):93–100. PubMed doi:10.1519/JSC.0b013e31818b9721

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Buchheit M, Lefebvre B, Laursen PB, Ahmaidi S. Reliability, usefulness, and validity of the 30–15 Intermittent Ice Test in young elite ice hockey players. J Strength Cond Res. 2011;25(5):1457–1464. PubMed doi:10.1519/JSC.0b013e3181d686b7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Scott TJ, Delaney JA, Duthie GM, et al. Reliability and usefulness of the 30–15 Intermittent Fitness Test in rugby league. J Strength Cond Res. 2015;29(7):1985–1990. PubMed doi:10.1519/JSC.0000000000000846

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jennings D, Cormack S, Coutts AJ, Boyd L, Aughey RJ. The validity and reliability of GPS units in team sport specific running patterns. Int J Sports Physiol Perform. 2010;5(3):328–341. PubMed doi:10.1123/ijspp.5.3.328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins WG. A scale of magnitudes for effect statistics. Internet Society of Sport Science. A New View of Statistics. http://sportsci.org/resource/stats/effectmag.html. Accessed September 2, 2016.

    • Search Google Scholar
    • Export Citation
  • 23.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p value. Sportscience. 2007;11:16–20. http://sportsci.org/2007/wghinf.htm.

    • Search Google Scholar
    • Export Citation
  • 25.

    Hulin BT, Gabbett TJ. Activity profiles of successful and less-successful semi-elite rugby league teams. Int J Sports Med. 2015;36(6):485–489. PubMed doi:10.1055/s-0034-1398532

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Gabbett TJ, Gahan CW. Repeated high-intensity-effort activity in relation to tries scored and conceded during rugby league match play. Int J Sports Physiol Perform. 2016; 11(4):530–534. doi:10.1123/ijspp.2015-0266

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Buchheit M, Laursen PB. HIT, solutions to the programming puzzle part 1. Sports Med. 2013;43:313–338. PubMed doi:10.1007/s40279-013-0029-x

  • 28.

    Edwards AM, Clark N, Macfadyen AM. Lactate and ventilatory thresholds reflect the training status of professional soccer players where maximum aerobic power is unchanged. J Sports Sci Med. 2003;2(1):23–29. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Impellizzeri FM, Rampinini E, Marcora SM. Physiological assessment of aerobic training in soccer. J Sports Sci. 2005;23(6):583–592. PubMed doi:10.1080/02640410400021278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Gabbett T, Kelly J, Pezet T. A comparison of fitness and skill among playing positions in sub-elite rugby league players. J Sci Med Sport. 2008;11(6):585–592. PubMed doi:10.1016/j.jsams.2007.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Baker DG, Newton RU. Comparison of lower body strength, power, acceleration, speed, agility, and sprint momentum to describe and compare playing rank among professional rugby league players. J Strength Cond Res. 2008;22(1):153–158. PubMed doi:10.1519/JSC.0b013e31815f9519

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Delaney JA, Scott TJ, Ballard DA, et al. Contributing factors to change-of-direction ability in professional rugby league players. J Strength Cond Res. 2015;29(10):2688–2696. PubMed doi:10.1519/JSC.0000000000000960

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 122 122 17
Full Text Views 10 10 0
PDF Downloads 5 5 0