Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To compare the load–velocity relationship between 4 variants of the bench-press (BP) exercise. Methods: The full load–velocity relationship of 30 men was evaluated by means of an incremental loading test starting at 17 kg and progressing to the individual 1-repetition maximum (1RM) in 4 BP variants: concentric-only BP, concentric-only BP throw (BPT), eccentric-concentric BP, and eccentric-concentric BPT. Results: A strong and fairly linear relationship between mean velocity (MV) and %1RM was observed for the 4 BP variants (r2 > .96 for pooled data and r2 > .98 for individual data). The MV associated with each %1RM was significantly higher in the eccentric-concentric technique than in the concentric-only technique. The only significant difference between the BP and BPT variants was the higher MV with the light to moderate loads (20–70%1RM) in the BPT using the concentric-only technique. MV was significantly and positively correlated between the 4 BP variants (r = .44–.76), which suggests that the subjects with higher velocities for each %1RM in 1 BP variant also tend to have higher velocities for each %1RM in the 3 other BP variants. Conclusions: These results highlight the need for obtaining specific equations for each BP variant and the existence of individual load–velocity profiles.

García-Ramos, Pestaña-Melero, Pérez-Castilla, and Rojas are with the Dept of Physical Education and Sport, University of Granada, Granada, Spain. García-Ramos is also with the Faculty of Education, Catholic University of Most Holy Conception, Concepción, Chile. Haff is with the Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA, Australia.

García-Ramos (amagr@ugr.es) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Mann JIvey PSayers S. Velocity-based training in football. Strength Cond J. 2015;37:5257. doi:10.1519/SSC.0000000000000177

  • 2.

    González-Badillo JJMarques MCSánchez-Medina L. The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinet. 2011;29(A):1519. doi:10.2478/v10078-011-0053-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Harris NKCronin JTaylor KLBoris JSheppard J. Understanding position transducer technology for strength and conditioning practitioners. Strength Cond J. 2010;32:6679. doi:10.1519/SSC.0b013e3181eb341b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Banyard HGNosaka KSato KHaff GG. Validity of various methods for determining velocity, force, and power in the back squat. Int J Sports Physiol Perform. 2017;9:125. PubMed doi:10.1123/ijspp.2016-0627

    • Search Google Scholar
    • Export Citation
  • 5.

    Balsalobre-Fernandez CMarchante DMunoz-Lopez MJimenez SL. Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. J Sports Sci. 2017;36:6470. PubMed doi:10.1080/02640414.2017.1280610

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sanchez-Medina LPerez CEGonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31:123129. PubMed doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    García-Ramos AHaff GPadial PFeriche B. Reliability of power and velocity variables collected during the traditional and ballistic bench press exercise. Sport Biomech. 2017;28:114. doi:10.1080/14763141.2016.1260767

    • Search Google Scholar
    • Export Citation
  • 8.

    Conceição FFernandes JLewis MGonzaléz-Badillo JJJimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci. 2016;34:10991106. doi:10.1080/02640414.2015.1090010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Pallarés JGSánchez-Medina LPérez CEDe La Cruz-Sánchez EMora-Rodriguez R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J Sports Sci. 2014;32:11651175. doi:10.1080/02640414.2014.889844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    González-Badillo JJSánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31:347352. doi:10.1055/s-0030-1248333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Pareja-Blanco FRodríguez-Rosell DSánchez-Medina Let al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sport. 2017;27:724735. PubMed doi:10.1111/sms.12678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Sánchez-Medina LGonzález-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43:17251734. PubMed doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Randell ADCronin JBKeogh JWGill NDPedersen MC. Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. J Strength Cond Res. 2011;25:8793. PubMed doi:10.1519/JSC.0b013e3181fee634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Muñoz-López MMarchante DCano-Ruiz MLópez-Chicharro JBalsalobre-Fernández C. Load-, force-, and power-velocity relationships in the prone pull-up exercise. Int J Sports Physiol Perform. 2017;2:122. PubMed doi:10.1123/ijspp.2016-0657

    • Search Google Scholar
    • Export Citation
  • 15.

    Sánchez-Medina LGonzález-Badillo JJPérez CEPallarés JG. Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int J Sports Med. 2014;35:209216. PubMed doi:10.1055/s-0033-1351252

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jidovtseff BHarris NKCrielaard JMCronin JB. Using the load-velocity relationship for 1RM prediction. J Strength Cond Res. 2011;25:267270. PubMed doi:10.1519/JSC.0b013e3181b62c5f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Loturco IKobal RMoraes JEet al. Predicting the maximum dynamic strength in bench-press: the high-precision of the bar-velocity approach. J Strength Cond Res. 2017;31:11271131. PubMed doi:10.1519/JSC.0000000000001670

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Markovic G. Does plyometric training improve vertical jump height?: a meta-analytical review. Br J Sports Med. 2007;41:349355. PubMed doi:10.1136/bjsm.2007.035113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sáez de Villarreal ERequena BCronin JB. The effects of plyometric training on sprint performance: a meta analysis. J Strength Cond Res. 2012;26:575584. doi:10.1519/JSC.0b013e318220fd03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Newton RUKraemer WJHakkinen KHumphries BJMurphy AJ. Kinematics, kinetics, and muscle activation during explosive upper body movements. J Appl Biomech. 1996;12:3143. doi:10.1123/jab.12.1.31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cronin JBMcNair PJMarshall RN. Force-velocity analysis of strength-training techniques and load: Implications for training strategy and research. J Strength Cond Res. 2003;17:148155. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Banyard HGNosaka KHaff GG. Reliability and validity of the load-velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31:18971904. PubMed doi:10.1519/JSC.0000000000001657

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Komi PV. Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. J Biomech. 2000;33:11971206. PubMed doi:10.1016/S0021-9290(00)00064-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    van den Tillaar REttema G. The ‘sticking period’ in a maximum bench press. J Sports Sci. 2010;28:529535. PubMed doi:10.1080/02640411003628022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Jiménez-Reyes PSamozino PBrughelli MMorin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7:677. doi:10.3389/fphys.2016.00677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Giroux CRabita GChollet DGuilhem G. Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech. 2016;32:5968. PubMed doi:10.1123/jab.2015-0070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Samozino PEdouard PSangnier SBrughelli MGimenez PMorin JB. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35:505510. PubMed doi:10.1055/s-0033-1354382

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    García-Ramos APestaña-Melero FPérez-Castilla ARojas FHaff G. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? [published online ahead of print May 23 2017]. J Strength Cond Res. PubMed doi:10.1519/JSC.0000000000001998

    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 109 109 25
Full Text Views 11 11 2
PDF Downloads 8 8 1
Altmetric Badge
PubMed
Google Scholar
Cited By