Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To compare the load–velocity relationship between 4 variants of the bench-press (BP) exercise. Methods: The full load–velocity relationship of 30 men was evaluated by means of an incremental loading test starting at 17 kg and progressing to the individual 1-repetition maximum (1RM) in 4 BP variants: concentric-only BP, concentric-only BP throw (BPT), eccentric-concentric BP, and eccentric-concentric BPT. Results: A strong and fairly linear relationship between mean velocity (MV) and %1RM was observed for the 4 BP variants (r2 > .96 for pooled data and r2 > .98 for individual data). The MV associated with each %1RM was significantly higher in the eccentric-concentric technique than in the concentric-only technique. The only significant difference between the BP and BPT variants was the higher MV with the light to moderate loads (20–70%1RM) in the BPT using the concentric-only technique. MV was significantly and positively correlated between the 4 BP variants (r = .44–.76), which suggests that the subjects with higher velocities for each %1RM in 1 BP variant also tend to have higher velocities for each %1RM in the 3 other BP variants. Conclusions: These results highlight the need for obtaining specific equations for each BP variant and the existence of individual load–velocity profiles.

García-Ramos, Pestaña-Melero, Pérez-Castilla, and Rojas are with the Dept of Physical Education and Sport, University of Granada, Granada, Spain. García-Ramos is also with the Faculty of Education, Catholic University of Most Holy Conception, Concepción, Chile. Haff is with the Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA, Australia.

García-Ramos (amagr@ugr.es) is corresponding author.
  • 1.

    Mann J, Ivey P, Sayers S. Velocity-based training in football. Strength Cond J. 2015;37:5257. doi:10.1519/SSC.0000000000000177

  • 2.

    González-Badillo JJ, Marques MC, Sánchez-Medina L. The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinet. 2011;29(A):1519. doi:10.2478/v10078-011-0053-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Harris NK, Cronin J, Taylor KL, Boris J, Sheppard J. Understanding position transducer technology for strength and conditioning practitioners. Strength Cond J. 2010;32:6679. doi:10.1519/SSC.0b013e3181eb341b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Banyard HG, Nosaka K, Sato K, Haff GG. Validity of various methods for determining velocity, force, and power in the back squat. Int J Sports Physiol Perform. 2017;9:125. PubMed doi:10.1123/ijspp.2016-0627

    • Search Google Scholar
    • Export Citation
  • 5.

    Balsalobre-Fernandez C, Marchante D, Munoz-Lopez M, Jimenez SL. Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. J Sports Sci. 2017;36:6470. PubMed doi:10.1080/02640414.2017.1280610

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31:123129. PubMed doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    García-Ramos A, Haff G, Padial P, Feriche B. Reliability of power and velocity variables collected during the traditional and ballistic bench press exercise. Sport Biomech. 2017;28:114. doi:10.1080/14763141.2016.1260767

    • Search Google Scholar
    • Export Citation
  • 8.

    Conceição F, Fernandes J, Lewis M, Gonzaléz-Badillo JJ, Jimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci. 2016;34:10991106. doi:10.1080/02640414.2015.1090010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Pallarés JG, Sánchez-Medina L, Pérez CE, De La Cruz-Sánchez E, Mora-Rodriguez R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J Sports Sci. 2014;32:11651175. doi:10.1080/02640414.2014.889844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31:347352. doi:10.1055/s-0030-1248333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sport. 2017;27:724735. PubMed doi:10.1111/sms.12678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43:17251734. PubMed doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Randell AD, Cronin JB, Keogh JW, Gill ND, Pedersen MC. Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. J Strength Cond Res. 2011;25:8793. PubMed doi:10.1519/JSC.0b013e3181fee634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Muñoz-López M, Marchante D, Cano-Ruiz M, López-Chicharro J, Balsalobre-Fernández C. Load-, force-, and power-velocity relationships in the prone pull-up exercise. Int J Sports Physiol Perform. 2017;2:122. PubMed doi:10.1123/ijspp.2016-0657

    • Search Google Scholar
    • Export Citation
  • 15.

    Sánchez-Medina L, González-Badillo JJ, Pérez CE, Pallarés JG. Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int J Sports Med. 2014;35:209216. PubMed doi:10.1055/s-0033-1351252

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jidovtseff B, Harris NK, Crielaard JM, Cronin JB. Using the load-velocity relationship for 1RM prediction. J Strength Cond Res. 2011;25:267270. PubMed doi:10.1519/JSC.0b013e3181b62c5f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Loturco I, Kobal R, Moraes JE, et al. Predicting the maximum dynamic strength in bench-press: the high-precision of the bar-velocity approach. J Strength Cond Res. 2017;31:11271131. PubMed doi:10.1519/JSC.0000000000001670

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Markovic G. Does plyometric training improve vertical jump height?: a meta-analytical review. Br J Sports Med. 2007;41:349355. PubMed doi:10.1136/bjsm.2007.035113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sáez de Villarreal E, Requena B, Cronin JB. The effects of plyometric training on sprint performance: a meta analysis. J Strength Cond Res. 2012;26:575584. doi:10.1519/JSC.0b013e318220fd03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Newton RU, Kraemer WJ, Hakkinen K, Humphries BJ, Murphy AJ. Kinematics, kinetics, and muscle activation during explosive upper body movements. J Appl Biomech. 1996;12:3143. doi:10.1123/jab.12.1.31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cronin JB, McNair PJ, Marshall RN. Force-velocity analysis of strength-training techniques and load: Implications for training strategy and research. J Strength Cond Res. 2003;17:148155. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Banyard HG, Nosaka K, Haff GG. Reliability and validity of the load-velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31:18971904. PubMed doi:10.1519/JSC.0000000000001657

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Komi PV. Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. J Biomech. 2000;33:11971206. PubMed doi:10.1016/S0021-9290(00)00064-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    van den Tillaar R, Ettema G. The ‘sticking period’ in a maximum bench press. J Sports Sci. 2010;28:529535. PubMed doi:10.1080/02640411003628022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7:677. doi:10.3389/fphys.2016.00677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Giroux C, Rabita G, Chollet D, Guilhem G. Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech. 2016;32:5968. PubMed doi:10.1123/jab.2015-0070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35:505510. PubMed doi:10.1055/s-0033-1354382

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    García-Ramos A, Pestaña-Melero F, Pérez-Castilla A, Rojas F, Haff G. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? [published online ahead of print May 23, 2017]. J Strength Cond Res. PubMed doi:10.1519/JSC.0000000000001998

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 441 397 34
Full Text Views 26 17 0
PDF Downloads 19 12 0