Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

The rating-of-perceived-exertion (RPE) template is thought to regulate pacing and has been shown to be very robust in different circumstances. Purpose: The primary purpose was to investigate whether the RPE template can be manipulated by changing the race distance during the course of a time trial. The secondary purpose was to study how athletes cope with this manipulation, especially in terms of the RPE template. Method: Trained male subjects (N = 10) performed 3 cycling time trials: a 10-km (TT10), a 15-km (TT15), and a manipulated 15-km (TTman). During the TTman, subjects started the time trial believing that they were going to perform a 10-km time trial. However, at 7.5 km they were told that it was a 15-km time trial. Results: A significant main effect of time-trial condition on RPE scores until kilometer 7.5 was found (P = .016). Post hoc comparisons showed that the RPE values of the TT15 were lower than the RPE values of the TT10 (difference 0.60; CI95% 0.11, 1.0) and TTman (difference 0.73; CI95% 0.004, 1.5). After the 7.5 km, a transition phase occurs, in which an interaction effect is present (P = .011). After this transition phase, the RPE values of TTman and TT15 did not statistically differ (P = 1.00). Conclusions: This novel distance-endpoint manipulation demonstrates that it is possible to switch between RPE templates. A clear shift in RPE during the TTman is present between the RPE templates of the TT10 and TT15. The shift strongly supports suggestions that pacing is regulated using an RPE template.

Schallig, Veneman, Noordhof, de Koning, and Foster are with the Dept of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. Rodríguez-Marroyo is with the Dept of Physical Education and Sports, University of León, León, Spain. Porcari, Koning, and Foster are with the Dept of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI.

de Koning (j.j.de.koning@vu.nl) is corresponding author.
  • 1.

    Foster C, De Koning JJ, Hettinga F, et al. Pattern of energy expenditure during simulated competition. Med Sci Sports Exerc. 2003;35(5):826–831. doi:10.1249/01.MSS.0000065001.17658.68

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Foster C, Dekoning J, Hettinga F, et al. Effect of competitive distance on energy expenditure during simulated competition. Int J Sports Med. 2004;25(3):198–204. PubMed doi:10.1055/s-2003-45260

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    van der Zwaard S, Rougoor G, van Kasteel PY, et al. Graded exercise testing versus simulated competition exercise in trained older males. J Cardiopulm Rehabil Prev. 2015;35(6):423–430. PubMed doi:10.1097/HCR.0000000000000135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Foster C, De Koning J, Bischel S, et al. Pacing strategies for endurance performance. Endurance Train Sci Pract. 2012;1:85–97.

  • 5.

    Foster C, Porcari J, de Koning J, et al. Exercise training for performance and health. Dtsch Z Sportmed. 2012;2012(3):69–74. doi:10.5960/dzsm.2011.066

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Abbiss CR, Laursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239–252. doi:10.2165/00007256-200838030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392–400. doi:10.1136/bjsm.2008.050799

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Amann M, Proctor LT, Sebranek JJ, Eldridge MW, Pegelow DF, Dempsey JA. Somatosensory feedback from the limbs exerts inhibitory influences on central neural drive during whole body endurance exercise. J Appl Physiol. 2008;105(6):1714–1724. doi:10.1152/japplphysiol.90456.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52(5):416–420. PubMed doi:10.1007/BF01919309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tucker R, Marle T, Lambert EV, Noakes TD. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J Physiol. 2006;574(3):905–915. doi:10.1113/jphysiol.2005.101733

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Albertus Y, Tucker R, St Clair Gibson A, Lambert EV, Hampson DB, Noakes TD. Effect of distance feedback on pacing strategy and perceived exertion during cycling. Med Sci Sports Exerc. 2005;37(3):461–468. doi:10.1249/01.MSS.0000155700.72702.76

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Micklewright D, Papadopoulou E, Swart J, Noakes T. Previous experience influences pacing during 20 km time trial cycling. Br J Sports Med. 2010;44(13):952–960. PubMed doi:10.1136/bjsm.2009.057315

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Paterson S, Marino F. Effect of deception of distance on prolonged cycling performance. Percept Mot Skills. 2004;98(3):1017–1026. doi:10.2466/pms.98.3.1017-1026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Levels K, de Koning JJ, Foster C, Daanen HA. The effect of skin temperature on performance during a 7.5-km cycling time trial. Eur J Appl Physiol. 2012;112(9):3387–3395. doi:10.1007/s00421-012-2316-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rauch HG, St Clair Gibson A, Lambert EV, Noakes TD. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005;39(1):34–38. PubMed doi:10.1136/bjsm.2003.010645

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gibson ASC, Noakes T. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med. 2004;38(6):797–806. doi:10.1136/bjsm.2003.009852

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Noakes TD, Gibson ASC, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med. 2005;39(2):120–124. PubMed doi:10.1136/bjsm.2003.010330

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Noakes TD. Linear relationship between the perception of effort and the duration of constant load exercise that remains. J Appl Physiol. 2004;96(4):1571–1573. PubMed doi:10.1152/japplphysiol.01124.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Tucker R, Noakes TD. The physiological regulation of pacing strategy during exercise: a critical review. Br J Sports Med. 2009;43(6):1. PubMed doi:10.1136/bjsm.2009.057562

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Marcora S. Counterpoint: afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance. J Appl Physiol (Bethesda, Md: 1985). 2010;108(2):454–456. doi:10.1152/japplphysiol.00976.2009a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Pageaux B. The psychobiological model of endurance performance: an effort-based decision-making theory to explain self-paced endurance performance. Sports Med. 2014;44(9):1319–1320. PubMed doi:10.1007/s40279-014-0198-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Brehm JW, Self EA. The intensity of motivation. Annu Rev Psychol. 1989;40(1):109–131. doi:10.1146/annurev.ps.40.020189.000545

  • 23.

    Marcora SM. Do we really need a central governor to explain brain regulation of exercise performance? Eur J Appl Physiol. 2008;104(5):929–931. doi:10.1007/s00421-008-0818-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Abbiss CR, Peiffer JJ, Meeusen R, Skorski S. Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring? Sports Med. 2015;45(9):1235–1243. PubMed doi:10.1007/s40279-015-0344-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi:10.1249/00005768-198205000-00012

  • 26.

    de Morree HM, Marcora SM. Effects of isolated locomotor muscle fatigue on pacing and time trial performance. Eur J Appl Physiol. 2013;113(9):2371–2380. PubMed doi:10.1007/s00421-013-2673-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    De Koning JJ, Foster C, Bakkum A, et al. Regulation of pacing strategy during athletic competition. PLoS ONE. 2011;6(1):e15863. doi:10.1371/journal.pone.0015863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Faulkner J, Parfitt G, Eston R. The rating of perceived exertion during competitive running scales with time. Psychophysiology. 2008;45(6):977–985. PubMed doi:10.1111/j.1469-8986.2008.00712.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Joseph T, Johnson B, Battista R, et al. Perception of fatigue during simulated competition. Med Sci Sports Exerc. 2008;40(2):381–386. PubMed doi:10.1249/mss.0b013e31815a83f6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Swart J, Lamberts RP, Lambert MI, et al. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint. Br J Sports Med. 2009;43(10):775–781. PubMed doi:10.1136/bjsm.2008.056036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Foster C, Hendrickson KJ, Peyer K, et al. Pattern of developing the performance template. Br J Sports Med. 2009;43(10):765–769. PubMed doi:10.1136/bjsm.2008.054841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Stone MR, Thomas K, Wilkinson M, Gibson ASC, Thompson KG. Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. Eur J Appl Physiol. 2011;111(8):1807–1813. PubMed doi:10.1007/s00421-010-1818-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Swart J, Lamberts RP, Lambert MI, et al. Exercising with reserve: evidence that the central nervous system regulates prolonged exercise performance. Br J Sports Med. 2009;43(10):782–788. PubMed doi:10.1136/bjsm.2008.055889

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Johnson BD, Joseph T, Wright G, et al. Rapidity of responding to a hypoxic challenge during exercise. Eur J Appl Physiol. 2009;106(4):493–499. PubMed doi:10.1007/s00421-009-1036-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Tucker R, Kayser B, Rae E, Rauch L, Bosch A, Noakes T. Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. Eur J Appl Physiol. 2007;101(6):771–781. doi:10.1007/s00421-007-0458-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Periard JD, Racinais S. Performance and pacing during cycle exercise in hyperthermic and hypoxic conditions. Med Sci Sports Exerc. 2016;48(5):845–853. PubMed doi:10.1249/MSS.0000000000000839

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Abbiss CR, Burnett A, Nosaka K, Green JP, Foster JK, Laursen PB. Effect of hot versus cold climates on power output, muscle activation, and perceived fatigue during a dynamic 100-km cycling trial. J Sports Sci. 2010;28(2):117–125. doi:10.1080/02640410903406216

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Levels K, De Koning J, Broekhuijzen I, Zwaan T, Foster C, Daanen H. Effects of radiant heat exposure on pacing pattern during a 15-km cycling time trial. J Sports Sci. 2014;32(9):845–852. PubMed doi:10.1080/02640414.2013.862843

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Cohen J, Reiner B, Foster C, et al. Breaking away: effects of nonuniform pacing on power output and growth of rating of perceived exertion. Int J Sports Physiol Perform. 2013;8(4):352–357. PubMed doi:10.1123/ijspp.8.4.352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    De Pauw K, Roelands B, Cheung SS, De Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111–122. PubMed doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Girden ER. ANOVA: Repeated Measures. Newbury Park, CA: Sage; 1992.

  • 42.

    Paton CD, Hopkins WG. Variation in performance of elite cyclists from race to race. Eur J Sport Sci. 2006;6(01):25–31. doi:10.1080/17461390500422796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    McCormick A, Meijen C, Marcora S. Psychological determinants of whole-body endurance performance. Sports Med. 2015;45(7):997–1015. PubMed doi:10.1007/s40279-015-0319-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Jones HS, Williams EL, Bridge CA, et al. Physiological and psychological effects of deception on pacing strategy and performance: a review. Sports Med. 2013;43(12):1243–1257. PubMed doi:10.1007/s40279-013-0094-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Thomas K, Stone MR, Thompson KG, Gibson ASC, Ansley L. Reproducibility of pacing strategy during simulated 20-km cycling time trials in well-trained cyclists. Eur J Appl Physiol. 2012;112(1):223–229. doi:10.1007/s00421-011-1974-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Baden D, McLean T, Tucker R, Noakes T, Gibson ASC. Effect of anticipation during unknown or unexpected exercise duration on rating of perceived exertion, affect, and physiological function. Br J Sports Med. 2005;39(10):742–746. doi:10.1136/bjsm.2004.016980

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Eston R, Stansfield R, Westoby P, Parfitt G. Effect of deception and expected exercise duration on psychological and physiological variables during treadmill running and cycling. Psychophysiology. 2012;49(4):462–469. PubMed doi:10.1111/j.1469-8986.2011.01330.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Faulkner J, Arnold T, Eston R. Effect of accurate and inaccurate distance feedback on performance markers and pacing strategies during running. Scand J Med Sci Sports. 2011;21(6):e176–183. doi:10.1111/j.1600-0838.2010.01233.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 91 91 17
Full Text Views 13 13 0
PDF Downloads 3 3 0