Effect of Body Composition on Physiological Responses to Cold-Water Immersion and the Recovery of Exercise Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To explore the influence of body composition on thermal responses to cold-water immersion (CWI) and the recovery of exercise performance. Methods: Male subjects were stratified into 2 groups: low fat (LF; n = 10) or high fat (HF; n = 10). Subjects completed a high-intensity interval test (HIIT) on a cycle ergometer followed by a 15-min recovery intervention (control [CON] or CWI). Core temperature (Tc), skin temperature, and heart rate were recorded continuously. Performance was assessed at baseline, immediately post-HIIT, and 40 min postrecovery using a 4-min cycling time trial (TT), countermovement jump (CMJ), and isometric midthigh pull (IMTP). Perceptual measures (thermal sensation [TS], total quality of recovery [TQR], soreness, and fatigue) were also assessed. Results: Tc and TS were significantly lower in LF than in HF from 10 min (Tc, LF 36.5°C ± 0.5°C, HF 37.2°C ± 0.6°C; TS, LF 2.3 ± 0.5 arbitrary units [a.u.], HF 3.0 ± 0.7 a.u.) to 40 min (Tc, LF 36.1°C ± 0.6°C, HF 36.8°C ±0.7°C; TS, LF 2.3 ± 0.6 a.u., HF 3.2 ± 0.7 a.u.) after CWI (P < .05). Recovery of TT performance was significantly enhanced after CWI in HF (10.3 ± 6.1%) compared with LF (3.1 ± 5.6%, P = .01); however, no differences were observed between HF (6.9% ±5.7%) and LF (5.4% ± 5.2%) with CON. No significant differences were observed between groups for CMJ, IMTP, TQR, soreness, or fatigue in either condition. Conclusion: Body composition influences the magnitude of Tc change during and after CWI. In addition, CWI enhanced performance recovery in the HF group only. Therefore, body composition should be considered when planning CWI protocols to avoid overcooling and maximize performance recovery.

Stephens, Halson, Miller, and Chapman are with the Dept of Physiology, Australian Inst of Sport, Canberra, ACT, Australia. Stephens, Slater, and Askew are with the School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.

Stephens (jessica.stephens@act.gov.au) is corresponding author.
  • 1.

    Vaile J, Halson S, Graham S. Recovery review—science vs practice. J Aust Strength Cond. 2010;18(suppl 2):5–21.

  • 2.

    Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233–240. PubMed doi:10.1136/bjsports-2011-090061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vaile J, O’Hagan C, Stefanovic B, Walker M, Gill N, Askew CD. Effect of cold water immersion on repeated cycling performance and limb blood flow. Br J Sports Med. 2011;45(10):825–829. doi:10.1136/bjsm.2009.067272

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Paddon-Jones DJ, Quigley BM. Effect of cryotherapy on muscle soreness and strength following eccentric exercise. Int J Sports Med. 1997;18(8):588–590. PubMed doi:10.1055/s-2007-972686

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sellwood KL, Brukner P, Williams D, Nicol A, Hinman R. Ice-water immersion and delayed-onset muscle soreness: a randomised controlled trial. Br J Sports Med. 2007;41(6):392–397. PubMed doi:10.1136/bjsm.2006.033985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    White GE, Rhind SG, Wells GD. The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur J Appl Physiol. 2014;114(11):2353–2367. PubMed doi:10.1007/s00421-014-2954-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Broatch JR, Petersen A, Bishop DJ. Postexercise cold water immersion benefits are not greater than the placebo effect. Med Sci Sports Exerc. 2014;46(11):2139–2147. PubMed doi:10.1249/MSS.0000000000000348

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Machado AF, Ferreira PH, Micheletti JK, et al. Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness?: a systematic review and meta-analysis. Sports Med. 2016;46(4):503–514. PubMed doi:10.1007/s40279-015-0431-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Stephens JM, Halson S, Miller J, Slater GJ, Askew CD. Cold-water immersion for athletic recovery: one size does not fit all. Int J Sports Physiol Perform. 2017;12(1):2–9. PubMed doi:10.1123/ijspp.2016-0095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bieuzen F, Bleakley CM, Costello JT. Contrast water therapy and exercise induced muscle damage: a systematic review and meta-analysis. PLoS ONE. 2013;8(4):62356. PubMed doi:10.1371/journal.pone.0062356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Schimpchen J, Wagner M, Ferrauti A, Kellmann M, Pfeiffer M, Meyer T. Can cold water immersion enhance recovery in elite Olympic weightlifters?: an individualized perspective. J Strength Cond Res. 2017;31(6):1569–1576. doi:10.1519/JSC.0000000000001591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ihsan M, Watson G, Abbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46(8):1095–1109. doi:10.1007/s40279-016-0483-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Stephens JM, Argus C, Driller MW. The relationship between body composition and thermal responses to hot and cold water immersion. J Hum Perf Extrem Environ. 2014;11(2):1–9. doi:10.7771/2327-2937.1051

    • Search Google Scholar
    • Export Citation
  • 14.

    Myrer JW, Myrer KA, Measom GJ, Fellingham GW, Evers SL. Muscle temperature is affected by overlying adipose when cryotherapy is administered. J Athl Train. 2001;36(1):32–36. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Xu X, Castellani JW, Santee W, Kolka M. Thermal responses for men with different fat compositions during immersion in cold water at two depths: prediction versus observation. Eur J Appl Physiol. 2007;100(1):79–88. doi:10.1007/s00421-007-0393-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Glickman-Weiss EL, Goss FL, Robertson RJ, Metz KF, Cassinelli DA. Physiological and thermal responses of males with varying body compositions during immersion in moderatley cold water. Aviat Space Eviron Med. 1991;62:1063–1067. PubMed

    • Search Google Scholar
    • Export Citation
  • 17.

    Stocks JM, Taylor NA, Tipton MJ, Greenleaf JE. Human physiological responses to cold exposure. Aviat Space Environ Med. 2004;75(5):444–457. PubMed

  • 18.

    Stephens J, Halson S, Vaile J, Slater G, Askew C. Effect of body composition on core temperature responses to post-exercise cold water immersion. J Sci Med Sport. 2015;19:e4. doi:10.1016/j.jsams.2015.12.390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Nana A, Slater GJ, Stewart AD, Burke LM. Methodology review: using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int J Sport Nutr Exerc Metab. 2015;25(2):198–215. doi:10.1123/ijsnem.2013-0228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Daniell N, Olds T, Tomkinson G. Technical note: criterion validity of whole body surface area equations: a comparison using 3D laser scanning. Am J Phys Anthropol. 2012;148(1):148–155. doi:10.1002/ajpa.22051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Stewart A, Marfell-Jones M, Olds T, de Ridder H. International Standards for Anthropometric Assessment. 3rd ed. Underdale, Australia: International Society for the Advancement of Kinanthropometry; 2011.

    • Search Google Scholar
    • Export Citation
  • 22.

    Versey N, Halson S, Dawson B. Effect of contrast water therapy duration on recovery of cycling performance: a dose-response study. Eur J Appl Physiol. 2011;111(1):37–46. PubMed doi:10.1007/s00421-010-1614-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Versey NG, Halson SL, Dawson BT. Water immersion recovery for athletes: effect on exercise performance and practical recommendations. Sports Med. 2013;43(11):1101–1130. PubMed doi:10.1007/s40279-013-0063-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Halson SL, Bartram J, West N, et al. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014;46(8):1631–1639. PubMed doi:10.1249/MSS.0000000000000268

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ramanathan NL. A new weighting system for mean surface temperature of the human body. J Appl Physiol. 1964;19:531–533. PubMed doi:10.1152/jappl.1964.19.3.531

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998.

  • 27.

    Young AA, Dawson NJ. Static and dynamic response characteristics, receptive fields, and interaction with noxious input of midline medullary thermoresponsive neurons in the rat. J Neurophysiol. 1987;57(6):1925–1936. PubMed doi:10.1152/jn.1987.57.6.1925

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kellmann M. Enhancing Recovery: Preventing Underperformance in Athletes. Champaign, IL: Human Kinetics; 2002.

  • 29.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Stephens JM, Halson SL, Miller J, Slater GJ, Askew CD. Influence of body composition on physiological responses to post-exercise hydrotherapy. J Sports Sci. 2018;36(9):1044–1053. doi:10.1080/02640414.2017.1355062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Vaile J, Halson S, Gill N, Dawson B. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. J Sports Sci. 2008;26(5):431–440. doi:10.1080/02640410701567425

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Vaile J, Halson S, Gill N, Dawson B. Effect of hydrotherapy on recovery from fatigue. Int J Sports Med. 2008;29(7):539–544. PubMed doi:10.1055/s-2007-989267

All Time Past Year Past 30 Days
Abstract Views 180 180 43
Full Text Views 3 3 2
PDF Downloads 4 4 3