Caffeine and Physiological Responses to Submaximal Exercise: A Meta-Analysis

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

The aim of this study was to carry out a systematic review and meta-analysis of the effects of caffeine supplementation on physiological responses to submaximal exercise. A total of 26 studies met the inclusion criteria of adopting double-blind, randomized crossover designs that included a sustained (5–30 min) fixed-intensity bout of submaximal exercise (constrained to 60–85% maximal rate of oxygen consumption) using a standard caffeine dose of 3–6 mg·kg−1 administered 30–90 min prior to exercise. Meta-analyses were completed using a random-effects model, and data are presented as raw mean difference (D) with associated 95% confidence limits (CLs). Relative to placebo, caffeine led to significant increases in submaximal measures of minute ventilation (D = 3.36 L·min−1; 95% CL, 1.63–5.08; P = .0001; n = 73), blood lactate (D = 0.69 mmol·L−1; 95% CL, 0.46–0.93; P < .00001; n = 208), and blood glucose (D = 0.42 mmol·L−1; 95% CL, 0.29–0.55; P < .00001; n = 129). In contrast, caffeine had a suppressive effect on ratings of perceived exertion (D = −0.8; 95% CL, −1.1 to −0.6; P < .00001; n = 147). Caffeine had no effect on measures of heart rate (P = .99; n = 207), respiratory exchange ratio (P = .18; n = 181), or oxygen consumption (P = .92; n = 203). The positive effects of caffeine supplementation on sustained high-intensity exercise performance are widely accepted, although the mechanisms to explain that response are currently unresolved. This meta-analysis has revealed clear effects of caffeine on various physiological responses during submaximal exercise, which may help explain its ergogenic action.

The authors are with the School of Sport, Health and Applied Sciences, St Mary’s University, Twickenham, United Kingdom.

Glaister (mark.glaister@stmarys.ac.uk) is corresponding author.
  • 1.

    Burke LM, Desbrow B, Spriet L. Caffeine for Sports Performance. Champaign, IL: Human Kinetics; 2013.

  • 2.

    Glaister M, Muniz-Pumares D, Patterson SD, Foley P, McInnes G. Caffeine supplementation and peak anaerobic power output. Eur J Sport Sci. 2015;15(5):400406. PubMed doi:10.1080/17461391.2014.962619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Glaister M, Howatson G, Abraham CS, et al. Caffeine supplementation and multiple sprint running performance. Med Sci Sports Exerc. 2008;40(10):18351840. PubMed doi:10.1249/MSS.0b013e31817a8ad2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kalmar JM. The influence of caffeine on voluntary muscle activation. Med Sci Sports Exerc. 2005;37(12):21132119. PubMed doi:10.1249/01.mss.0000178219.18086.9e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Acker-Hewitt TL, Shafer BM, Saunders MJ, Goh Q, Luden ND. Independent and combined effects of carbohydrate and caffeine ingestion on aerobic cycling performance in the fed state. Appl Physiol Nutr Metab. 2012;37(2):276283. PubMed doi:10.1139/h11-160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Anderson ME, Bruce CR, Fraser SF, et al. Improved 2000-meter rowing performance in competitive oarswomen after caffeine ingestion. Int J Sport Nutr Exerc Metab. 2000;10(4):464475. PubMed doi:10.1123/ijsnem.10.4.464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bell DG, Jacobs I, Zamecnik J. Effects of caffeine, ephedrine and their combination on time to exhaustion during high-intensity exercise. Eur J Appl Physiol Occup Physiol. 1998;77(5):427433. PubMed doi:10.1007/s004210050355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bruce CR, Anderson ME, Fraser SF, et al. Enhancement of 2000-m rowing performance after caffeine ingestion. Med Sci Sports Exerc. 2000;32(11):19581963. PubMed doi:10.1097/00005768-200011000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Casal DC, Leon AS. Failure of caffeine to affect substrate utilisation during prolonged running. Med Sci Sports Exerc. 1985;17(1):174179. PubMed doi:10.1249/00005768-198502000-00029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    McClaran SR, Wetter TJ. Low doses of caffeine reduce heart rate during submaximal cycle ergometry. J Int Soc Sports Nutr. 2007;4:11. PubMed doi:10.1186/1550-2783-4-11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Tarnopolsky MA, Atkinson SA, MacDougall JD, Sale DG, Sutton JR. Physiological responses to caffeine during endurance running in habitual caffeine users. Med Sci Sports Exerc. 1989;21(4):418424. PubMed doi:10.1249/00005768-198908000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cruz RS, Alves de Aguiar R, Turnes T, Guglielmo LG, Beneke R, Caputo F. Caffeine affects time to exhaustion and substrate oxidation during cycling at maximal lactate steady state. Nutrients. 2015;7(7):52545264. PubMed doi:10.3390/nu7075219

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jenkins NT, Trilk JL, Singhal A, O’Connor PJ, Cureton KJ. Ergogenic effects of low doses of caffeine on cycling performance. Int J Sport Nutr Exerc Metab. 2008;18(3):328342. PubMed doi:10.1123/ijsnem.18.3.328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93(4):12271234. PubMed doi:10.1152/japplphysiol.00187.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Black CD, Waddell DE, Gonglach AR. Caffeine’s ergogenic effects on cycling: neuromuscular and perceptual factors. Med Sci Sports Exerc. 2015;47(6):11451158. PubMed doi:10.1249/MSS.0000000000000513

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Demura S, Yamada T, Terasawa N. Effect of coffee ingestion on physiological responses and ratings of perceived exertion during submaximal endurance exercise. Percept Mot Skills. 2007;105(3):11091116. doi:10.2466/pms.105.4.1109-1116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Graham TE, Helge JW, MacLean DA, Kiens B, Richter EA. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol. 2000;529(3):837847. doi:10.1111/j.1469-7793.2000.00837.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1995;78(3):867874. PubMed doi:10.1152/jappl.1995.78.3.867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Greer F, Friars D, Graham TE. Comparison of caffeine and theophylline ingestion: exercise metabolism and endurance. J Appl Physiol. 2000;89(5):18371844. PubMed doi:10.1152/jappl.2000.89.5.1837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Olcina GJ, Timóna R, Muñoz D. Caffeine ingestion effects on oxidative stress in a steady-state test at 75%V ˙ O 2max. Sci Sports. 2008;23(2):8790. doi:10.1016/j.scispo.2007.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Roy BD, Bosman MJ, Tarnopolsky MA. An acute oral dose of caffeine does not alter glucose kinetics during prolonged dynamic exercise in trained endurance athletes. Eur J Appl Physiol. 2001;85(3):280286. doi:10.1007/s004210100456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Toner MM, Kirkendall DT, Delio DJ, Chase JM, Cleary PA, Fox EL. Metabolic and cardiovascular responses to exercise with caffeine. Ergonomics. 1982;25(12):11751183. PubMed doi:10.1080/00140138208925074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Van Soeren MH, Graham TE. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol. 1998;85(4):14931501. doi:10.1152/jappl.1998.85.4.1493

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports. 1978;10(3):155158.

  • 25.

    Giles D, Maclaren D. Effects of caffeine and glucose ingestion on metabolic and respiratory functions during prolonged exercise. J Sports Sci. 1984;2(1):3546. doi:10.1080/02640418408729694

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Stadheim HK, Kvamme B, Olsen R, Drevon CA, Ivy JL, Jensen L. Caffeine increases performance in cross-country double-poling time trial exercise. Med Sci Sports Exerc. 2013;45(11):21752183. doi:10.1249/MSS.0b013e3182967948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Graham TE. Caffeine and exercise. Sports Med. 2001;31(11):785807. PubMed doi:10.2165/00007256-200131110-00002

  • 28.

    Graham TE, Battram DS, Dela F, El-Sohemy A, Thong FSL. Does caffeine alter muscle carbohydrate and fat metabolism during exercise? Appl Physiol Nutr Metab. 2008;33(6):13111318. doi:10.1139/H08-129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33(6):13191334. PubMed doi:10.1139/H08-130

  • 30.

    Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. 2005;15(2):6978. PubMed doi:10.1111/j.1600-0838.2005.00445.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83133. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Goldstein ER, Ziegenfuss T, Kalman D, et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):115. doi:10.1186/1550-2783-7-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Nehlig A, Debry G. Caffeine and sports activity: a review. Int J Sports Med. 1994;15(5):215223. PubMed doi:10.1055/s-2007-1021049

  • 34.

    Tarnopolsky MA. Effect of caffeine on the neuromuscular system-potential as an ergogenic aid. Appl Physiol Nutr Metab. 2008;33(6):12841289. doi:10.1139/H08-121

  • 35.

    Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42(7):13751387. PubMed doi:10.1249/MSS.0b013e3181cabbd8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Stadheim HK, Spencer M, Olsen R, Jensen J. Caffeine and performance over consecutive days of simulated competition. Med Sci Sports Exerc. 2014;46(9):17871796. PubMed doi:10.1249/MSS.0000000000000288

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):7084. PubMed doi:10.1097/00005768-200001000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Doherty M, Smith PM, Hughes MG, Davison RCR. Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sports Sci. 2004:22(7):637643. PubMed doi:10.1080/02640410310001655741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):9298.

  • 40.

    Daniels JW, Molé PA, Shaffrath JD, Stebbins CI. Effects of caffeine on blood pressure, heart rate, and forearm blood flow during dynamic leg exercise. J Appl Physiol. 1998;85(1):154159. PubMed doi:10.1152/jappl.1998.85.1.154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Graham TE, Hibbert E, Sathasivam P. Metabolic and exercise endurance effects of coffee and caffeine ingestion. J Appl Physiol. 1998;85(3):883889. doi:10.1152/jappl.1998.85.3.883

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons, Ltd; 2009.

  • 43.

    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557560. PubMed doi:10.1136/bmj.327.7414.557

  • 44.

    Ioannidis JPA, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ. 2007;335:914916. PubMed doi:10.1136/bmj.39343.408449.80

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta analysis. Stat Med. 2002;21:15391558. PubMed doi:10.1002/sim.1186

  • 46.

    Koupenova M, Ravid K. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism  [published online ahead of print 2013]. J Cell Physiol. doi:10.1002/jcp.24352

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Layland J, Carrick D, Lee M, Oldroyd K, Berry C. Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc Interv. 2014;7(6):581591. doi:10.1016/j.jcin.2014.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Benarroch EE. Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology. 2008;70(3):231236. PubMed doi:10.1212/01.wnl.0000297939.18236.ec

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Biaggioni I, Olafsson B, Robertson RM, Hollister AS, Robertson D. Cardiovascular and respiratory effects of adenosine in conscious man: evidence for chemoreceptor activation. Circ Res. 1987;61(6):779786. PubMed doi:10.1161/01.RES.61.6.779

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Bergman BC, Horning MA, Casazza GA, Wolfel EE, Butterfield GE, Brooks GA. Endurance training increases gluconeogenesis during rest and exercise in men. Am J Physiol Endocrinol Metab. 2000;278(2):244251. PubMed doi:10.1152/ajpendo.2000.278.2.E244

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Budohoski L, Challiss RA, McManus B, Newsholme EA. Effects of analogues of adenosine and methyl xanthines on insulin sensitivity in soleus muscle of the rat. FEBS Lett. 1984;167(1):14. PubMed doi:10.1016/0014-5793(84)80820-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Challis RA, Budohoski L, McManus B, Newsholme EA. Effects of an adenosine-receptor antagonist on insulin-resistance in soleus muscle from obese Zucker rats. Biochem J. 1984;221(3):915917. PubMed doi:10.1042/bj2210915

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Espinal J, Challiss RA, Newsholme EA. Effect of adenosine deaminase and an adenosine analogue on insulin sensitivity in soleus muscle of the rat. FEBS Lett. 1983;158(1):103106. doi:10.1016/0014-5793(83)80685-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Glaister M, Williams BH, Muniz-Pumares D, Balsalobre-Fernández C, Foley P. The effects of caffeine supplementation on physiological responses to submaximal exercise in endurance-trained men. PLoS ONE. 2016;11(8):e0161375. PubMed doi:10.1371/journal.pone.0161375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Angello DA, Berne RM, Coddington NM. Adenosine and insulin mediate glucose uptake in normoxic rat hearts by different mechanisms. Am J Physiol. 1993;265(3):H880H885.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Thong FSL, Derave W, Kiens B, et al. Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes. 2002;51(3):583590. PubMed doi:10.2337/diabetes.51.3.583

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Goedecke JH, St. Clair Gibson A, Grobler L, Collins M, Noakes TD, Lambert EV . Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. Am J Physiol Endocrinol Metab. 2000;279(6):E1325E1334. doi:10.1152/ajpendo.2000.279.6.E1325

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Péronnet F, Aguilaniu B. Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: a critical reappraisal. Respir Physiol Neurobiol. 2006;150(1):418. doi:10.1016/j.resp.2005.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Howell LL, Coffin VL, Spealman RD. Behavioral and physiological effects of xanthines in nonhuman primates. Psychopharmacology. 1997;129(1):114. doi:10.1007/s002130050155

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Lahiri S, Mitchell CH, Reigada D, Roy A, Cherniack NS. Purines, the carotid body and respiration. Respir Physiol Neurobiol. 2007;157(1):123129. PubMed doi:10.1016/j.resp.2007.02.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Rongen GA, Brooks SC, Pollard MJ, et al. Effect of adenosine on heart rate variability in humans. Clin Sci. 1999;96(6):597604. PubMed doi:10.1042/cs0960597

  • 62.

    Hu X, Adebiyi MG, Luo J, et al. Sustained elevated adenosine via ADORA2B promotes chronic pain through neuro-immune interaction. Cell Rep. 2016;16(1):106119. PubMed doi:10.1016/j.celrep.2016.05.080

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1545 1491 145
Full Text Views 48 42 5
PDF Downloads 26 23 5