Training-Related Changes in Force–Power Profiles: Implications for the Skeleton Start

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Athletes’ force–power characteristics influence sled velocity during the skeleton start, which is a crucial determinant of performance. This study characterized force–power profile changes across an 18-month period and investigated the associations between these changes and start performance. Methods: Seven elite- and 5 talent-squad skeleton athletes’ (representing 80% of registered athletes in the country) force–power profiles and dry-land push-track performances were assessed at multiple time points over two 6-month training periods and one 5-month competition season. Force–power profiles were evaluated using an incremental leg-press test (Keiser A420), and 15-m sled velocity was recorded using photocells. Results: Across the initial maximum strength development phases, increases in maximum force (Fmax) and decreases in maximum velocity (Vmax) were typically observed. These changes were greater for talent (23.6% and −12.5%, respectively) compared with elite (6.1% and −7.6%, respectively) athletes. Conversely, decreases in Fmax (elite −6.7% and talent −10.3%) and increases in Vmax (elite 8.1% and talent 7.7%) were observed across the winter period, regardless of whether athletes were competing (elite) or accumulating sliding experience (talent). When the training emphasis shifted toward higher-velocity, sprint-based exercises in the second training season, force–power profiles seemed to become more velocity oriented (higher Vmax and more negative force–velocity gradient), which was associated with greater improvements in sled velocity (r = .42 and −.45, respectively). Conclusions: These unique findings demonstrate the scope to influence force–power-generating capabilities in well-trained skeleton athletes across different training phases. To enhance start performance, it seems important to place particular emphasis on increasing maximum muscle-contraction velocity.

Colyer, Stokes, Bilzon, and Salo are with the Dept for Health, and Holdcroft, British Bobsleigh and Skeleton Association, University of Bath, Bath, United Kingdom.

Salo (A.Salo@bath.ac.uk) is corresponding author.
  • 1.

    Cronin JB, Hansen KT. Strength and power predictors of sports speed. J Strength Cond Res. 2005;19:349357.

  • 2.

    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112:39213930. PubMed doi:10.1007/s00421-012-2379-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Sands WA, Smith LSL, Kivi DMR, et al. Anthropometric and physical abilities profiles: US National Skeleton Team. Sports Biomech. 2005;4:197214. doi:10.1080/14763140508522863

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Colyer SL, Stokes KA, Bilzon JLJ, Cardinale M, Salo AIT. Physical predictors of elite skeleton start performance. Int J Sports Physiol Perform. 2017;12:8189. doi:10.1123/ijspp.2015-0631

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Zanoletti C, La Torre A, Merati G, Rampinini E, Impellizzeri FM. Relationship between push phase and final race time in skeleton performance. J Strength Cond Res. 2006;20:579583. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bullock N, Gulbin JP, Martin DT, Ross A, Holland T, Marino F. Talent identification and deliberate programming in skeleton: ice novice to Winter Olympian in 14 months. J Sports Sci. 2009;27:397404. PubMed doi:10.1080/02640410802549751

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force-velocity profile in ballistic movements—altius: citius or fortius? Med Sci Sports Exerc. 2012;44:313322. PubMed doi:10.1249/MSS.0b013e31822d757a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25:583594. PubMed doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Giroux C, Rabita G, Chollet D, Guilhem G. Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech. 2016;32:5968. PubMed doi:10.1123/jab.2015-0070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bobbert MF. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic? J Appl Physiol. 2012;112:19751983. PubMed doi:10.1152/japplphysiol.00787.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dorel S, Hautier CA, Rambaud O, et al. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med. 2005;26:739746. PubMed doi:10.1055/s-2004-830493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Med Assoc. 2013;310:21912194. doi:10.1001/jama.2013.281053

    • Search Google Scholar
    • Export Citation
  • 13.

    Colyer SL. Enhancing Start Performance in the Sport of Skeleton. [Unpublished doctoral thesis]. Bath, UK: University of Bath; 2015.

    • Export Citation
  • 14.

    Bullock N, Martin DT, Ross A, Rosemond D, Holland T, Marino FE. Characteristics of the start in women’s World Cup skeleton. Sports Biomech. 2008;7:351360. doi:10.1080/14763140802255796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1:5057. doi:10.1123/ijspp.1.1.50

  • 16.

    Gannon EA, Stokes KA, Trewartha G. Strength and power development in professional rugby union players over a training and playing season. Int J Sports Physiol Perform. 2016;11:381387. PubMed doi:10.1123/ijspp.2015-0337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Häkkinen K, Komi PV, Alén M, Kauhanen H. EMG, muscle fibre and force production characteristics during a 1 year training period in elite weight-lifters. Eur J Appl Physiol Occup Physiol. 1987;56:419427. doi:10.1007/BF00417769

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36:674688. doi:10.1249/01.MSS.0000121945.36635.61

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cormie P, McCaulley GO, McBride JM. Power versus strength-power jump squat training: influence on the load-power relationship. Med Sci Sports Exerc. 2007;39:9961003. PubMed doi:10.1097/mss.0b013e3180408e0c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Toji H, Suei K, Kaneko M. Effects of combined training loads on relations among force, velocity, and power development. Can J Appl Physiol. 1997;22:328336. PubMed doi:10.1139/h97-021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Colyer SL, Roberts SP, Thompson D, et al. Detecting meaningful body composition changes in athletes using dual energy X-ray absorptiometry. Physiol Meas. 2016;37:596609. PubMed doi:10.1088/0967-3334/37/4/596

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Harris GR, Stone MH, O’Bryant HS, Proulx CM, Johnson RL. Short-term performance effects of high power, high force, or combined weight-training methods. J Strength Cond Res. 2000;14:1420.

    • Search Google Scholar
    • Export Citation
  • 23.

    Young WB. Transfer of strength and power training to sports performance. Int J Sports Physiol Perform. 2006;1:7483. PubMed doi:10.1123/ijspp.1.2.74

  • 24.

    Moir G, Sanders R, Button C, Glaister M. The effect of periodized resistance training on accelerative sprint performance. Sports Biomech. 2007;6:285300. PubMed doi:10.1080/14763140701489793

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2015;26:648658. doi:10.1111/sms.12490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kearney JT. Sport performance enhancement: design and analysis of research. Med Sci Sports Exerc. 1999;31:755756. PubMed doi:10.1097/00005768-199905000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 520 421 37
Full Text Views 40 29 0
PDF Downloads 22 19 1