Training-Related Changes in Force–Power Profiles: Implications for the Skeleton Start

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Athletes’ force–power characteristics influence sled velocity during the skeleton start, which is a crucial determinant of performance. This study characterized force–power profile changes across an 18-month period and investigated the associations between these changes and start performance. Methods: Seven elite- and 5 talent-squad skeleton athletes’ (representing 80% of registered athletes in the country) force–power profiles and dry-land push-track performances were assessed at multiple time points over two 6-month training periods and one 5-month competition season. Force–power profiles were evaluated using an incremental leg-press test (Keiser A420), and 15-m sled velocity was recorded using photocells. Results: Across the initial maximum strength development phases, increases in maximum force (F max) and decreases in maximum velocity (V max) were typically observed. These changes were greater for talent (23.6% and −12.5%, respectively) compared with elite (6.1% and −7.6%, respectively) athletes. Conversely, decreases in F max (elite −6.7% and talent −10.3%) and increases in V max (elite 8.1% and talent 7.7%) were observed across the winter period, regardless of whether athletes were competing (elite) or accumulating sliding experience (talent). When the training emphasis shifted toward higher-velocity, sprint-based exercises in the second training season, force–power profiles seemed to become more velocity oriented (higher V max and more negative force–velocity gradient), which was associated with greater improvements in sled velocity (r = .42 and −.45, respectively). Conclusions: These unique findings demonstrate the scope to influence force–power-generating capabilities in well-trained skeleton athletes across different training phases. To enhance start performance, it seems important to place particular emphasis on increasing maximum muscle-contraction velocity.

Colyer, Stokes, Bilzon, and Salo are with the Dept for Health, and Holdcroft, British Bobsleigh and Skeleton Association, University of Bath, Bath, United Kingdom.

Salo (A.Salo@bath.ac.uk) is corresponding author.
  • 1.

    Cronin JB, Hansen KT. Strength and power predictors of sports speed. J Strength Cond Res. 2005;19:349357.

  • 2.

    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112:39213930. PubMed doi:10.1007/s00421-012-2379-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Sands WA, Smith LSL, Kivi DMR, et al. Anthropometric and physical abilities profiles: US National Skeleton Team. Sports Biomech. 2005;4:197214. doi:10.1080/14763140508522863

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Colyer SL, Stokes KA, Bilzon JLJ, Cardinale M, Salo AIT. Physical predictors of elite skeleton start performance. Int J Sports Physiol Perform. 2017;12:8189. doi:10.1123/ijspp.2015-0631

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Zanoletti C, La Torre A, Merati G, Rampinini E, Impellizzeri FM. Relationship between push phase and final race time in skeleton performance. J Strength Cond Res. 2006;20:579583. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bullock N, Gulbin JP, Martin DT, Ross A, Holland T, Marino F. Talent identification and deliberate programming in skeleton: ice novice to Winter Olympian in 14 months. J Sports Sci. 2009;27:397404. PubMed doi:10.1080/02640410802549751

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force-velocity profile in ballistic movements—altius: citius or fortius? Med Sci Sports Exerc. 2012;44:313322. PubMed doi:10.1249/MSS.0b013e31822d757a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25:583594. PubMed doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Giroux C, Rabita G, Chollet D, Guilhem G. Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech. 2016;32:5968. PubMed doi:10.1123/jab.2015-0070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bobbert MF. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic? J Appl Physiol. 2012;112:19751983. PubMed doi:10.1152/japplphysiol.00787.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dorel S, Hautier CA, Rambaud O, et al. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med. 2005;26:739746. PubMed doi:10.1055/s-2004-830493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Med Assoc. 2013;310:21912194. doi:10.1001/jama.2013.281053

    • Search Google Scholar
    • Export Citation
  • 13.

    Colyer SL. Enhancing Start Performance in the Sport of Skeleton. [Unpublished doctoral thesis]. Bath, UK: University of Bath; 2015.

  • 14.

    Bullock N, Martin DT, Ross A, Rosemond D, Holland T, Marino FE. Characteristics of the start in women’s World Cup skeleton. Sports Biomech. 2008;7:351360. doi:10.1080/14763140802255796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1:5057. doi:10.1123/ijspp.1.1.50

  • 16.

    Gannon EA, Stokes KA, Trewartha G. Strength and power development in professional rugby union players over a training and playing season. Int J Sports Physiol Perform. 2016;11:381387. PubMed doi:10.1123/ijspp.2015-0337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Häkkinen K, Komi PV, Alén M, Kauhanen H. EMG, muscle fibre and force production characteristics during a 1 year training period in elite weight-lifters. Eur J Appl Physiol Occup Physiol. 1987;56:419427. doi:10.1007/BF00417769

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36:674688. doi:10.1249/01.MSS.0000121945.36635.61

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cormie P, McCaulley GO, McBride JM. Power versus strength-power jump squat training: influence on the load-power relationship. Med Sci Sports Exerc. 2007;39:9961003. PubMed doi:10.1097/mss.0b013e3180408e0c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Toji H, Suei K, Kaneko M. Effects of combined training loads on relations among force, velocity, and power development. Can J Appl Physiol. 1997;22:328336. PubMed doi:10.1139/h97-021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Colyer SL, Roberts SP, Thompson D, et al. Detecting meaningful body composition changes in athletes using dual energy X-ray absorptiometry. Physiol Meas. 2016;37:596609. PubMed doi:10.1088/0967-3334/37/4/596

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Harris GR, Stone MH, O’Bryant HS, Proulx CM, Johnson RL. Short-term performance effects of high power, high force, or combined weight-training methods. J Strength Cond Res. 2000;14:1420.

    • Search Google Scholar
    • Export Citation
  • 23.

    Young WB. Transfer of strength and power training to sports performance. Int J Sports Physiol Perform. 2006;1:7483. PubMed doi:10.1123/ijspp.1.2.74

  • 24.

    Moir G, Sanders R, Button C, Glaister M. The effect of periodized resistance training on accelerative sprint performance. Sports Biomech. 2007;6:285300. PubMed doi:10.1080/14763140701489793

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2015;26:648658. doi:10.1111/sms.12490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kearney JT. Sport performance enhancement: design and analysis of research. Med Sci Sports Exerc. 1999;31:755756. PubMed doi:10.1097/00005768-199905000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 836 480 88
Full Text Views 47 16 1
PDF Downloads 32 18 1