Reliability of Wearable Inertial Measurement Units to Measure Physical Activity in Team Handball

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To assess the reliability and sensitivity of commercially available inertial measurement units to measure physical activity in team handball. Method: Twenty-two handball players were instrumented with 2 inertial measurement units (OptimEye S5; Catapult Sports, Melbourne, Australia) taped together. They participated in either a laboratory assessment (n = 10) consisting of 7 team handball–specific tasks or field assessment (n = 12) conducted in 12 training sessions. Variables, including PlayerLoad™ and inertial movement analysis (IMA) magnitude and counts, were extracted from the manufacturers’ software. IMA counts were divided into intensity bands of low (1.5–2.5 m·s−1), medium (2.5–3.5 m·s−1), high (>3.5 m·s−1), medium/high (>2.5 m·s−1), and total (>1.5 m·s−1). Reliability between devices and sensitivity was established using coefficient of variation (CV) and smallest worthwhile difference (SWD). Results: Laboratory assessment: IMA magnitude showed a good reliability (CV = 3.1%) in well-controlled tasks. CV increased (4.4–6.7%) in more-complex tasks. Field assessment: Total IMA counts (CV = 1.8% and SWD = 2.5%), PlayerLoad (CV = 0.9% and SWD = 2.1%), and their associated variables (CV = 0.4–1.7%) showed a good reliability, well below the SWD. However, the CV of IMA increased when categorized into intensity bands (2.9–5.6%). Conclusion: The reliability of IMA counts was good when data were displayed as total, high, or medium/high counts. A good reliability for PlayerLoad and associated variables was evident. The CV of the previously mentioned variables was well below the SWD, suggesting that OptimEye’s inertial measurement unit and its software are sensitive for use in team handball.

The authors are with the Dept of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.

Spencer (matthew.spencer@nih.no) is corresponding author.
  • 1.

    Cunniffe B, Proctor W, Baker JS, Davies B. An evaluation of the physiological demands of elite rugby union using Global Positioning System tracking software. J Strength Cond Res. 2009;23(4):11951203. PubMed doi:10.1519/JSC.0b013e3181a3928b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Di Salvo V, Baron R, Tschan H, Calderon Montero FJ, Bachl N, Pigozzi F. Performance characteristics according to playing position in elite soccer. Int J Sports Med. 2007;28(3):222227. PubMed doi:10.1055/s-2006-924294

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Michalsik LB, Madsen K, Aagaard P. Match performance and physiological capacity of female elite team handball players. Int J Sports Med. 2014;35:595607. PubMed doi:10.1055/s-0033-1358713

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Scott BR, Lockie RG, Knight TJ, Clark AC, Janse de Jonge XAK. A comparison of methods to quantify the in-season training load of professional soccer players. Int J Sports Physiol Perform. 2013;8(2):195202. PubMed doi:10.1123/ijspp.8.2.195

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Pyne DB, Spencer M, Mujika I. Improving the value of fitness testing for football. Int J Sports Physiol Perform. 2014;9(3):511514. PubMed doi:10.1123/ijspp.2013-0453

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Luteberget LS, Spencer M. High intensity events in international female team handball matches. Int J Sports Physiol Perform. 2017;12:5661. PubMed doi:10.1123/ijspp.2015-0641

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cormack SJ, Smith RL, Mooney MM, Young WB, O’Brien BJ. Accelerometer load as a measure of activity profile in different standards of netball match play. Int J Sports Physiol Perform. 2014;9(2):283291. PubMed doi:10.1123/ijspp.2012-0216

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Montgomery PG, Pyne DB, Minahan CL. The physical and physiological demands of basketball training and competition. Int J Sports Physiol Perform. 2010;5(1):7586. PubMed doi:10.1123/ijspp.5.1.75

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Boyd LJ, Ball K, Aughey RJ. Quantifying external load in Australian football matches and training using accelerometers. Int J Sports Physiol Perform. 2013;8(1):4451. PubMed doi:10.1123/ijspp.8.1.44

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gabbett T, Jenkins D, Abernethy B. Physical collisions and injury during professional rugby league skills training. J Sci Med Sport. 2010;13(6):578583. PubMed doi:10.1016/j.jsams.2010.03.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gastin PB, McLean O, Spittle M, Breed RV. Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. J Sci Med Sport. 2013;16(6):589593. PubMed doi:10.1016/j.jsams.2013.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Polley CS, Cormack SJ, Gabbett TJ, Polglaze T. Activity profile of high-level Australian lacrosse players. J Strength Cond Res. 2015;29(1):126136. PubMed doi:10.1519/JSC.0000000000000599

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Boyd LJ, Ball K, Aughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6:311321. PubMed doi:10.1123/ijspp.6.3.311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Meylan CM, Trewin J, McKean K. Quantifying explosive actions in international women’s soccer. Int J Sports Physiol Perform. 2017;12(3):310315. doi:10.1123/ijspp.2015-0520

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015;12(1):159. doi:10.1186/s12966-015-0314-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wundersitz DW, Gastin PB, Richter C, Robertson SJ, Netto KJ. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running. Eur J Sport Sci. 2015;15(5):382390. PubMed doi:10.1080/17461391.2014.955131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Wundersitz DW, Gastin PB, Robertson S, Davey PC, Netto KJ. Validation of a trunk-mounted accelerometer to measure peak impacts during team sport movements. Int J Sports Med. 2015;36(9):742746. PubMed doi:10.1055/s-0035-1547265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Simons C, Bradshaw EJ. Do accelerometers mounted on the back provide a good estimate of impact loads in jumping and landing tasks? Sport Biomech. 2016;15(1):7688. doi:10.1080/14763141.2015.1123765

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Wundersitz DW, Gastin PB, Robertson SJ, Netto KJ. Validity of a trunk-mounted accelerometer to measure physical collisions in contact sports. Int J Sports Physiol Perform. 2015;10(6):681686. PubMed doi:10.1123/ijspp.2014-0381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kelly SJ, Murphy AJ, Watsford ML, Austin D, Rennie M. Reliability and validity of sports accelerometers during static and dynamic testing. Int J Sports Physiol Perform. 2015;10(1):106111. PubMed doi:10.1123/ijspp.2013-0408

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Gastin PB, Mclean OC, Breed RV, Spittle M. Tackle and impact detection in elite Australian football using wearable microsensor technology. J Sports Sci. 2014;32(10):947953. PubMed doi:10.1080/02640414.2013.868920

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kelly D, Coughlan GF, Green BS, Caulfield B. Automatic detection of collisions in elite level rugby union using a wearable sensing device. Sport Eng. 2012;15(2):8192. doi:10.1007/s12283-012-0088-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    MacDonald K, Bahr R, Baltich J, Whittaker JL, Meeuwisse WH. Validation of an inertial measurement unit for the measurement of jump count and height. Phys Ther Sport. 2017;25:1519. PubMed doi:10.1016/j.ptsp.2016.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wundersitz DW, Josman C, Gupta R, Netto KJ, Gastin PB, Robertson S. Classification of team sport activities using a single wearable tracking device. J Biomech. 2015;48(15):39753981. PubMed doi:10.1016/j.jbiomech.2015.09.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gabbett TJ. Quantifying the physical demands of collision sports. J Strength Cond Res. 2013;27(8):23192322. PubMed doi:10.1519/JSC.0b013e318277fd21

  • 26.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Welk GJ. Principles of design and analyses for the calibration of accelerometry-based activity monitors. Med Sci Sports Exerc. 2005;37(suppl 11):501511. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Barrett S, Midgley A, Lovell R. PlayerLoad™: reliability, convergent validity, and influence of unit position during treadmill running. Int J Sports Physiol Perform. 2014;9(6):945952. PubMed doi:10.1123/ijspp.2013-0418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Johnston RJ, Watsford ML, Pine MJ, Spurrs RW, Murphy AJ, Pruyn EC. The validity and reliability of 5-Hz global positioning system units to measure team sport movement demands. J Strength Cond Res. 2012;26(3):758765. PubMed doi:10.1519/JSC.0b013e318225f161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Barrett S, Midgley AW, Towlson C, Garrett A, Portas M, Lovell R. Within-match PlayerLoad™ patterns during a simulated soccer match: potential implications for unit positioning and fatigue management. Int J Sports Physiol Perform. 2016;11(1):135140. PubMed doi:10.1123/ijspp.2014-0582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Barrett S, Midgley A, Reeves M, et al. The within-match patterns of locomotor efficiency during professional soccer match play: implications for injury risk? J Sci Med Sport. 2016;19(10):810815. PubMed doi:10.1016/j.jsams.2015.12.514

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Malone JJ, Lovell R, Varley MC, Coutts AJ. Unpacking the black box: applications and considerations for using GPS devices in sport. Int J Sports Physiol Perform. 2017;12(suppl 2):S218S226. PubMed doi:10.1123/ijspp.2016-0236

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 386 308 24
Full Text Views 48 24 0
PDF Downloads 22 16 1