Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: This study compared the concurrent validity and reliability of previously proposed generalized group equations for estimating the bench press (BP) 1-repetition maximum (1RM) with the individualized load–velocity relationship modeled with a 2-point method. Methods: Thirty men (BP 1RM relative to body mass: 1.08 [0.18] kg·kg−1) performed 2 incremental loading tests in the concentric-only BP exercise and another 2 in the eccentric–concentric BP exercise to assess their actual 1RM and load–velocity relationships. A high velocity (≈1 m·s−1) and a low velocity (≈0.5 m·s−1) were selected from their load–velocity relationships to estimate the 1RM from generalized group equations and through an individual linear model obtained from the 2 velocities. Results: The directly measured 1RM was highly correlated with all predicted 1RMs (r = .847–.977). The generalized group equations systematically underestimated the actual 1RM when predicted from the concentric-only BP (P < .001; effect size = 0.15–0.94) but overestimated it when predicted from the eccentric–concentric BP (P < .001; effect size = 0.36–0.98). Conversely, a low systematic bias (range: −2.3 to 0.5 kg) and random errors (range: 3.0–3.8 kg), no heteroscedasticity of errors (r2 = .053–.082), and trivial effect size (range: −0.17 to 0.04) were observed when the prediction was based on the 2-point method. Although all examined methods reported the 1RM with high reliability (coefficient of variation ≤ 5.1%; intraclass correlation coefficient  ≥ .89), the direct method was the most reliable (coefficient of variation < 2.0%; intraclass correlation coefficient ≥ .98). Conclusions: The quick, fatigue-free, and practical 2-point method was able to predict the BP 1RM with high reliability and practically perfect validity, and therefore, the authors recommend its use over generalized group equations.

García-Ramos, Pestaña-Melero, Pérez-Castilla, and Rojas are with the Dept of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. García-Ramos is also with the Faculty of Education, Catholic University of the Most Holy Conception, Concepción, Chile. Haff is with the Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA, Australia. Balsalobre-Fernández is with the Dept of Sport Sciences, Faculty of Physical Activity and Sport Sciences, European University of Madrid, Madrid, Spain. Jaric is with Biomechanics and Movement Science Graduate Program, Dept of Kinesiology and Applied Physiology, University of Delaware, Newark, DE.

García-Ramos (amagr@ugr.es) is corresponding author.
  • 1.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36:674688. PubMed doi:10.1249/01.MSS.0000121945.36635.61

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42:15821598. PubMed doi:10.1249/MSS.0b013e3181d2013a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Häkkinen A, Sokka T, Kotaniemi A, Hannonen P. A randomized two-year study of the effects of dynamic strength training on muscle strength, disease activity, functional capacity, and bone mineral density in early rheumatoid arthritis. Arthritis Rheum. 2001;44:515522. doi:10.1002/1529-0131(200103)44:3<515::AID-ANR98>3.0.CO;2-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Soriano MA, Jimenez-Reyes P, Rhea MR, Marin PJ. The optimal load for maximal power production during lower-body resistance exercises: a meta-analysis. Sports Med. 2015;45:11911205. PubMed doi:10.1007/s40279-015-0341-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Balsalobre-Fernandez C, Marchante D, Muñoz-Lopez M, Jimenez SL. Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. J Sports Sci. 2018;36(1):6470. PubMed doi:10.1080/02640414.2017.1280610

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31:347352. doi:10.1055/s-0030-1248333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    González-Badillo JJ, Marques MC, Sánchez-Medina L. The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinet. 2011;29:1519. PubMed doi:10.2478/v10078-011-0053-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Bazuelo-Ruiz B, Padial P, García-Ramos A, Morales-Artacho AJ, Miranda MT, Feriche B. Predicting maximal dynamic strength from the load–velocity relationship in squat exercise. J Strength Cond Res. 2015;29:19992005. PubMed doi:10.1519/JSC.0000000000000821

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Jidovtseff B, Harris NK, Crielaard JM, Cronin JB. Using the load–velocity relationship for 1RM prediction. J Strength Cond Res. 2011;25:267270. PubMed doi:10.1519/JSC.0b013e3181b62c5f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. J Phys Educ Recreat Dance. 1993;64:8890. doi:10.1080/07303084.1993.10606684

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Reynolds JM, Gordon TJ, Robergs RA. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J Strength Cond Res. 2006;20:584592. PubMed doi:10.1519/R-15304.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jovanonic M, Flanagan EP. Researched applications of velocity based strength training. J Aust Strength Cond. 2014;22:5869.

  • 13.

    Mann J, Ivey P, Sayers S. Velocity-based training in football. Strength Cond J. 2015;37:5257. doi:10.1519/SSC.0000000000000177

  • 14.

    Conceição F, Fernandes J, Lewis M, Gonzaléz-Badillo JJ, Jimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci. 2016;34:10991106. doi:10.1080/02640414.2015.1090010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Pallarés JG, Sánchez-Medina L, Pérez CE, De La Cruz-Sánchez E, Mora-Rodriguez R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J Sports Sci. 2014;32:11651175. doi:10.1080/02640414.2014.889844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sánchez-Medina L, González-Badillo JJ, Pérez CE, Pallarés JG. Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int J Sports Med. 2014;35:209216. PubMed doi:10.1055/s-0033-1351252

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Loturco I, Kobal R, Moraes JE, et al. Predicting the maximum dynamic strength in bench-press: the high-precision of the bar-velocity approach. J Strength Cond Res. 2017;31:11271131. PubMed doi:10.1519/JSC.0000000000001670

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sánchez-Moreno M, Rodríguez-Rosell D, Pareja-Blanco F, Mora-Custodio R, González-Badillo JJ. Movement velocity as indicator of relative intensity and level of effort attained during the set in pull-up exercise. Int J Sports Physiol Perform. 2017;12(10):13781384. PubMed doi:10.1123/ijspp.2016-0791

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Munoz-Lopez M, Marchante D, Cano-Ruiz MA, Chicharro JL, Balsalobre-Fernandez C. Load, force and power-velocity relationships in the prone pull-up exercise. Int J Sports Physiol Perform. 2017;12(9):12491255. PubMed doi:10.1123/ijspp.2016-0657

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7:677. PubMed doi:10.3389/fphys.2016.00677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Giroux C, Rabita G, Chollet D, Guilhem G. Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech. 2016;32:5968. PubMed doi:10.1123/jab.2015-0070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35:505510. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pérez-Castilla A, Jaric S, Feriche B, Padial P, García-Ramos A. Evaluation of muscle mechanical capacities through the two-load method: optimization of the load selection. J Strength Cond Res. 2018;32:12451253. doi:10.1519/JSC.0000000000001969

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jaric S. Two-load method for distinguishing between muscle force, velocity, and power-producing capacities. Sports Med. 2016;46:15851589. PubMed doi:10.1007/s40279-016-0531-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31:123129. PubMed doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Jaric S. Force-velocity relationship of muscles performing multi-joint maximum performance tasks. Int J Sports Med. 2015;36:699704. PubMed doi:10.1055/s-0035-1547283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Banyard HG, Nosaka K, Haff GG. Reliability and validity of the load-velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31(7):18971904. PubMed doi:10.1519/JSC.0000000000001657

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Zivkovic MZ, Djuric S, Cuk I, Suzovic D, Jaric S. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks. J Sports Sci. 2017;35:12871293. PubMed doi:10.1080/02640414.2016.1221521

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Mahwah, NJ: Lawrence Erlbaum; 1988.

  • 31.

    Hopkins W. Calculations for reliability (Excel spreadsheet). A new view of statistics. 2000. http://www.sportsci.org/resource/stats/relycalc.html. Accessed May 30, 2017.

    • Export Citation
  • 32.

    García-Ramos A, Pestaña-Melero F, Pérez-Castilla A, Rojas F, Haff G. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res. 2018;32:12731279. doi:10.1519/JSC.0000000000001998

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Banyard HG, Nosaka K, Sato K, Haff G. Validity of various methods for determining velocity, force and power in the back squat. Int J Sports Physiol Perform. 2017;12(9):11701176. PubMed doi:10.1123/ijspp.2016-0627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 578 461 40
Full Text Views 48 19 0
PDF Downloads 14 8 1