Pneumatic Compression Fails to Improve Performance Recovery in Trained Cyclists

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To examine the efficacy of intermittent sequential pneumatic compression (ISPC) on exercise recovery and subsequent performance, when implemented between a 20-min cycling bout (simulated scratch race) and a 4-min cycling test (simulated individual pursuit), as experienced during an Omnium track cycling competition. Methods: Twenty-one (13 male and 8 female, mean [SD]: age = 36 [14] y) trained cyclists completed a familiarization trial followed by 2 experimental trials in a counterbalanced, cross-over design. Participants performed a fixed-intensity 20-min cycling bout on a Wattbike cycle ergometer, followed by a 30-min recovery period where ISPC recovery boots or passive recovery was implemented. At the conclusion of the recovery period, participants performed a 4-min maximal cycling bout (4-min time trial [TT]). Average power (watts) for the 4-min TT, blood lactate concentration, and perceived total quality recovery (TQR) during the recovery period were used to examine the influence of ISPC. Results: There were no significant differences between trials for the 4-min TT (P = .08), with the effect deemed to be trivial (d = −0.08). There was an unclear effect (d [±90% confidence interval] = 0.26 [±0.78], P = .57) for ISPC vs passive recovery in the clearance of blood lactate during the recovery period. There was a small but not significant difference for perceived TQR in favor of ISPC (d [±90% confidence interval] = 0.27 [±0.27], P = .07). Conclusion: There was little additional benefit associated with the use of ISPC to enhance recovery and subsequent performance when used during the recovery period between 2 events in a simulated Omnium track cycling competition.

The authors are with the University of Waikato, Hamilton, New Zealand.

Overmayer (rovermayer@gmail.com) is corresponding author.
  • 1.

    Nédélec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer. Sports Med. 2013;43(1):9–22. doi:10.1007/s40279-012-0002-0

  • 2.

    Argus CK, Driller MW, Ebert TR, Martin DT, Halson SL. The effects of 4 different recovery strategies on repeat sprint-cycling performance. Int J Sports Physiol Perform. 2013;8(5):542–548. PubMed doi:10.1123/ijspp.8.5.542

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ofoghi B, Zeleznikow J, MacMahon C, Dwyer D. A machine learning approach to predicting winning patterns in track cycling omnium. In: Bramer M, ed. Artificial Intelligence in Theory and Practice III. Springer Verlag; 2010:67–76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Stanley J, Peake J, Buchheit M. Consecutive days of cold water immersion: effects on cycling performance and heart rate variability. Eur J Appl Physiol. 2013;113(2):371–384. PubMed doi:10.1007/s00421-012-2445-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bentley DJ, McNaughton LR, Thompson D, Vleck VE, Batterham AM. Peak power output, the lactate threshold, and time trial performance in cyclists. Med Sci Sports Exerc. 2001;33(12):2077–2081. PubMed doi:10.1097/00005768-200112000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bishop D, Bonetti D, Dawson B. The effect of three different warm-up intensities on kayak ergometer performance. Med Sci Sports Exerc. 2001;33(6):1026–1032. PubMed doi:10.1097/00005768-200106000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Borne R, Hausswirth C, Bieuzen F. Relationship between blood flow and performance recovery: a randomized, placebo-controlled study. Int J Sports Physiol Perform. 2017;12(2):152–160. PubMed doi:10.1123/ijspp.2015-0779

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hanson E, Stetter K, Li R, Thomas A. An intermittent pneumatic compression device reduces blood lactate concentrations more effectively than passive recovery after Wingate testing. J Athl Enhanc. 2013;2(3):18–25. doi:10.4172/2324-9080.1000115

    • Search Google Scholar
    • Export Citation
  • 9.

    O’Donnell S, Driller MW. The effect of intermittent sequential pneumatic compression on recovery between exercise bouts in well-trained triathletes. J Sci Cycl. 2015;4(3):19.

    • Search Google Scholar
    • Export Citation
  • 10.

    Chleboun G, Howell J, Baker H, et al. Intermittent pneumatic compression effect on eccentric exercise-induced swelling, stiffness, and strength loss. Arch Phys Med Rehabil. 1995;76(8):744–749. PubMed doi:10.1016/S0003-9993(95)80529-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hill JA, Howatson G, van Someren KA, Davidson S, Pedlar CR. The variation in pressures exerted by commercially available compression garments. Sports Eng. 2015;18(2):115–121. doi:10.1007/s12283-015-0170-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Chen AH, Frangos SG, Kilaru S, Sumpio BE. Intermittent pneumatic compression devices—physiological mechanisms of action. Eur J Vasc Endovasc Surg. 2001;21(5):383–392. PubMed doi:10.1053/ejvs.2001.1348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Zelikovski A, Kaye C, Fink G, Spitzer S, Shapiro Y. The effects of the modified intermittent sequential pneumatic device (MISPD) on exercise performance following an exhaustive exercise bout. Br J Sports Med. 1993;27(4):255–259. doi:10.1136/bjsm.27.4.255

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Northey JM, Rattray B, Argus CK, Etxebarria N, Driller MW. Vascular occlusion and sequential compression for recovery after resistance exercise. J Strength Cond Res. 2016;30(2):533–539. PubMed doi:10.1519/JSC.0000000000001080

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wiener A, Mizrahi J, Verbitsky O. Enhancement of tibialis anterior recovery by intermittent sequential pneumatic compression of the legs. Basic Appl Myol. 2001;11(2):87–90.

    • Search Google Scholar
    • Export Citation
  • 16.

    Phillips KE, Hopkins WG. Performance relationships in timed and mass-start events for elite omnium cyclists. Int J Sports Physiol Perform. 2017;12(5):628–633. PubMed doi:10.1123/ijspp.2016-0204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hopker J, Myers S, Jobson S, Bruce W, Passfield L. Validity and reliability of the Wattbike cycle ergometer. Int J Sports Med. 2010;31(10):731–736. doi:10.1055/s-0030-1261968

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548–555. PubMed doi:10.1249/mss.0b013e31802dd3e6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Christensen PM, Bangsbo J. Influence of prior intense exercise and cold water immersion in recovery for performance and physiological response during subsequent exercise. Front Physiol. 2016;7(269):1–10. PubMed doi:10.3389/fphys.2016.00269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kraemer WJ, Bush JA, Wickham RB, et al. Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise. J Orthop Sport Phys Ther. 2001;31(6):282–290. doi:10.2519/jospt.2001.31.6.282

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Brophy-Williams N, Driller MW, Kitic CM, Fell JW, Halson SL. Effect of compression socks worn between repeated maximal running bouts. Int J Sports Physiol Perform. 2017;12(5):621–627. PubMed doi:10.1123/ijspp.2016-0162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998.

  • 23.

    Miller FR, Manfredi TG. Physiological and anthropometrical predictors of 15-kilometer time trial cycling performance time. Res Q Exerc Sport. 1987;58(3):250–254. doi:10.1080/02701367.1987.10605457

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Bonaventura JM, Sharpe K, Knight E, Fuller KL, Tanner RK, Gore CJ. Reliability and accuracy of six hand-held blood lactate analysers. J Sports Sci Med. 2015;14(1):203. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Brophy-Williams N, Driller M, Halson S, Fell J, Shing C. Evaluating the Kikuhime pressure monitor for use with sports compression clothing. Sports Eng. 2014;17(1):55–60. doi:10.1007/s12283-013-0125-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Driller MW, Argus CK, Bartram JC, et al. Reliability of a 2-bout exercise test on a Wattbike cycle ergometer. Int J Sports Physiol Perform. 2014;9(2):340–345. PubMed doi:10.1123/ijspp.2013-0103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum; 1977.

  • 28.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):50–57. PubMed doi:10.1123/ijspp.1.1.50

  • 29.

    Stickford AS, Chapman RF, Johnston JD, Stager JM. Lower-leg compression, running mechanics, and economy in trained distance runners. Int J Sports Physiol Perform. 2015;10(1):76–83. PubMed doi:10.1123/ijspp.2014-0003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 206 206 32
Full Text Views 9 9 1
PDF Downloads 1 1 0