Perception of Breakfast Ingestion Enhances High-Intensity Cycling Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To examine the effect on short-duration, high-intensity cycling time-trial (TT) performance when a semisolid breakfast containing carbohydrate (CHO) or a taste- and texture-matched placebo is ingested 90 min preexercise compared with a water (WAT) control. Methods: A total of 13 well-trained cyclists (mean [SD]: age = 25 [8] y, body mass = 71.1 [5.9] kg, height = 1.76 [0.04] m, maximum power output = 383 [46] W, and peak oxygen uptake = 4.42 [0.53] L·min−1) performed 3 experimental trials examining breakfast ingestion 90 min before a 10-min steady-state cycle (60% maximum power output) and an ∼20-min TT (to complete a workload target of 376 [36] kJ). Subjects consumed either WAT, a semisolid CHO breakfast (2 g carbohydrate CHO·kg−1 body mass), or a taste- and texture-matched placebo (PLA). Blood lactate and glucose concentrations were measured periodically throughout the rest and exercise periods. Results: The TT was completed more quickly in CHO (1120 [69] s; P = .006) and PLA (1112 [50] s; P = .030) compared with WAT (1146 [74] s). Ingestion of CHO caused an increase in blood glucose concentration throughout the rest period in CHO (peak at 30-min rest = 7.37 [1.10] mmol·L−1; P < .0001) before dropping below baseline levels after the steady-state cycling. Conclusion: A short-duration cycling TT was completed more quickly when subjects perceived that they had consumed breakfast (PLA or CHO) 90 min prior to the start of the exercise. The improvement in performance is likely attributable to a psychological rather than physiological effect.

The authors are with the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.

Mears (s.a.mears@lboro.ac.uk) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Gleeson MMaughan RJGreenhaff PL. Comparison of the effects of pre-exercise feedings of glucose, glycerol and placebo on endurance and fuel homeostasis in man. Eur J Appl Physiol. 1986;55:645653. PubMed doi:10.1007/BF00423211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Neuffer PDCostill DLFlynn MGKirwan JPMitchell JBHoumard J. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol. 1987;62:983988. PubMed doi:10.1152/jappl.1987.62.3.983

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Schabort EJBosch ANWeltan SMNoakes TD. The effect of a pre-exercise meal on time to fatigue during prolonged cycling exercise. Med Sci Sports Exerc. 1999;31:464471. PubMed doi:10.1097/00005768-199903000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Sherman WMBrodowicz GWright DAAllen WKSimonsen JCDernbach A. Effects of 4 h preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc. 1989;21:598604. PubMed doi:10.1249/00005768-198910000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sherman WMPeden MCWrigh DA. Carbohydrate feedings 1 h before exercise improves cycling performance. Am J Clin Nutr. 1991;54:866870. PubMed doi:10.1093/ajcn/54.5.866

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wright DASherman WMDernbach AR. Carbohydrate feedings before, during, and in combination improves cycling performance. J Appl Physiol. 1991;71:10821088. PubMed doi:10.1152/jappl.1991.71.3.1082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Burke LMHawley JAWong SHSJeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(S1):1727. PubMed doi:10.1080/02640414.2011.585473

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Palmer GSClancy MCHawley JARodger IMBurke LMNoakes TD. Carbohydrate ingestion immediately before exercise does not improve 20 km time trial performance in well trained cyclists. Int J Sports Med. 1998;19:415418. PubMed doi:10.1055/s-2007-971938

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Van Proeyen KSzlufcik KNielens HRamaekers MHespel P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J App Physiol. 2011;110:236245. PubMed doi:10.1152/japplphysiol.00907.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Burke LM. Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports. 2010;20:4858. PubMed doi:10.1111/j.1600-0838.2010.01185.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hulston CJVenables MCMann CHet al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc. 2010;42:20462055. PubMed doi:10.1249/MSS.0b013e3181dd5070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Yeo WKPaton CDGarnham APBurke LMCarey ALHawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:14621470. PubMed doi:10.1152/japplphysiol.90882.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Taylor RMagnusson IRothman DLet al. Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest. 1996;97:126132. PubMed doi:10.1172/JCI118379

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Clark VRHopkins WGHawley JABurke LM. Placebo effect of carbohydrate feedings during 40-km cycling time trial. Med Sci Sports Exerc. 2000;32:16421647. PubMed doi:10.1097/00005768-200009000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hulston CJJeukendrup AE. No placebo effect from carbohydrate intake during prolonged exercise. Int J Sport Nutr Exerc Metab. 2009;19:275284. PubMed doi:10.1123/ijsnem.19.3.275

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Carter JMJeukendrup AEJones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36:21072111. PubMed doi:10.1249/01.MSS.0000147585.65709.6F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Rollo ICole MMiller RWilliams C. Influence of mouth rinsing a carbohydrate solution on 1-h running performance. Med Sci Sports Exerc. 2010;42:798804. PubMed doi:10.1249/MSS.0b013e3181bac6e4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bonen AMalcolm SAKilgour RDMacIntyre KPBelcastro AN. Glucose ingestion before and during intense exercise. J Appl Physiol Respir Environ Exerc Physiol. 1981;50:766771. PubMed doi:10.1152/jappl.1981.50.4.766

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Douen ARamlal TRastogi Set al. Exercise induces recruitment of the ‘insulin-responsive glucose transported’. Evidence for distinct intracellular insulin- and exercise-recruitable transported pool in skeletal muscle. J Biol Chem. 1990;265:1342713430. PubMed

    • Search Google Scholar
    • Export Citation
  • 20.

    Galloway SDRLott MJEToulouse LC. Preexercise carbohydrate feeding and high-intensity exercise capacity: effects of timing of intake and carbohydrate concentration. Int J Sport Nutr Exerc Metab. 2014;24:258266. PubMed doi:10.1123/ijsnem.2013-0119

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jeukendrup AEKiller SC. The myths surrounding pre-exercise carbohydrate feeding. Nutr Metab. 2010;57:1825. PubMed doi:10.1159/000322698

  • 22.

    Morton JPCroft LBartlett JDMacLaren DPMReilly TEvans LMcArdle ADrust B. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol. 2009;106:15131521. PubMed doi:10.1152/japplphysiol.00003.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 103 103 25
Full Text Views 8 8 0
PDF Downloads 3 3 0
Altmetric Badge
PubMed
Google Scholar
Cited By