Perception of Breakfast Ingestion Enhances High-Intensity Cycling Performance

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Stephen A. Mears
Search for other papers by Stephen A. Mears in
Current site
Google Scholar
PubMed
Close
,
Kathryn Dickinson
Search for other papers by Kathryn Dickinson in
Current site
Google Scholar
PubMed
Close
,
Kurt Bergin-Taylor
Search for other papers by Kurt Bergin-Taylor in
Current site
Google Scholar
PubMed
Close
,
Reagan Dee
Search for other papers by Reagan Dee in
Current site
Google Scholar
PubMed
Close
,
Jack Kay
Search for other papers by Jack Kay in
Current site
Google Scholar
PubMed
Close
, and
Lewis J. James
Search for other papers by Lewis J. James in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To examine the effect on short-duration, high-intensity cycling time-trial (TT) performance when a semisolid breakfast containing carbohydrate (CHO) or a taste- and texture-matched placebo is ingested 90 min preexercise compared with a water (WAT) control. Methods: A total of 13 well-trained cyclists (mean [SD]: age = 25 [8] y, body mass = 71.1 [5.9] kg, height = 1.76 [0.04] m, maximum power output = 383 [46] W, and peak oxygen uptake = 4.42 [0.53] L·min−1) performed 3 experimental trials examining breakfast ingestion 90 min before a 10-min steady-state cycle (60% maximum power output) and an ∼20-min TT (to complete a workload target of 376 [36] kJ). Subjects consumed either WAT, a semisolid CHO breakfast (2 g carbohydrate CHO·kg−1 body mass), or a taste- and texture-matched placebo (PLA). Blood lactate and glucose concentrations were measured periodically throughout the rest and exercise periods. Results: The TT was completed more quickly in CHO (1120 [69] s; P = .006) and PLA (1112 [50] s; P = .030) compared with WAT (1146 [74] s). Ingestion of CHO caused an increase in blood glucose concentration throughout the rest period in CHO (peak at 30-min rest = 7.37 [1.10] mmol·L−1; P < .0001) before dropping below baseline levels after the steady-state cycling. Conclusion: A short-duration cycling TT was completed more quickly when subjects perceived that they had consumed breakfast (PLA or CHO) 90 min prior to the start of the exercise. The improvement in performance is likely attributable to a psychological rather than physiological effect.

The authors are with the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.

Mears (s.a.mears@lboro.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Gleeson M, Maughan RJ, Greenhaff PL. Comparison of the effects of pre-exercise feedings of glucose, glycerol and placebo on endurance and fuel homeostasis in man. Eur J Appl Physiol. 1986;55:645653. PubMed doi:10.1007/BF00423211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Neuffer PD, Costill DL, Flynn MG, Kirwan JP, Mitchell JB, Houmard J. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol. 1987;62:983988. PubMed doi:10.1152/jappl.1987.62.3.983

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Schabort EJ, Bosch AN, Weltan SM, Noakes TD. The effect of a pre-exercise meal on time to fatigue during prolonged cycling exercise. Med Sci Sports Exerc. 1999;31:464471. PubMed doi:10.1097/00005768-199903000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Sherman WM, Brodowicz G, Wright DA, Allen WK, Simonsen JC, Dernbach A. Effects of 4 h preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc. 1989;21:598604. PubMed doi:10.1249/00005768-198910000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sherman WM, Peden MC, Wrigh DA. Carbohydrate feedings 1 h before exercise improves cycling performance. Am J Clin Nutr. 1991;54:866870. PubMed doi:10.1093/ajcn/54.5.866

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, and in combination improves cycling performance. J Appl Physiol. 1991;71:10821088. PubMed doi:10.1152/jappl.1991.71.3.1082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(S1):1727. PubMed doi:10.1080/02640414.2011.585473

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Palmer GS, Clancy MC, Hawley JA, Rodger IM, Burke LM, Noakes TD. Carbohydrate ingestion immediately before exercise does not improve 20 km time trial performance in well trained cyclists. Int J Sports Med. 1998;19:415418. PubMed doi:10.1055/s-2007-971938

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J App Physiol. 2011;110:236245. PubMed doi:10.1152/japplphysiol.00907.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Burke LM. Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports. 2010;20:4858. PubMed doi:10.1111/j.1600-0838.2010.01185.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hulston CJ, Venables MC, Mann CH, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc. 2010;42:20462055. PubMed doi:10.1249/MSS.0b013e3181dd5070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:14621470. PubMed doi:10.1152/japplphysiol.90882.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Taylor R, Magnusson I, Rothman DL, et al. Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest. 1996;97:126132. PubMed doi:10.1172/JCI118379

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Clark VR, Hopkins WG, Hawley JA, Burke LM. Placebo effect of carbohydrate feedings during 40-km cycling time trial. Med Sci Sports Exerc. 2000;32:16421647. PubMed doi:10.1097/00005768-200009000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hulston CJ, Jeukendrup AE. No placebo effect from carbohydrate intake during prolonged exercise. Int J Sport Nutr Exerc Metab. 2009;19:275284. PubMed doi:10.1123/ijsnem.19.3.275

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36:21072111. PubMed doi:10.1249/01.MSS.0000147585.65709.6F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Rollo I, Cole M, Miller R, Williams C. Influence of mouth rinsing a carbohydrate solution on 1-h running performance. Med Sci Sports Exerc. 2010;42:798804. PubMed doi:10.1249/MSS.0b013e3181bac6e4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bonen A, Malcolm SA, Kilgour RD, MacIntyre KP, Belcastro AN. Glucose ingestion before and during intense exercise. J Appl Physiol Respir Environ Exerc Physiol. 1981;50:766771. PubMed doi:10.1152/jappl.1981.50.4.766

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Douen A, Ramlal T, Rastogi S, et al. Exercise induces recruitment of the ‘insulin-responsive glucose transported’. Evidence for distinct intracellular insulin- and exercise-recruitable transported pool in skeletal muscle. J Biol Chem. 1990;265:1342713430. PubMed

    • Search Google Scholar
    • Export Citation
  • 20.

    Galloway SDR, Lott MJE, Toulouse LC. Preexercise carbohydrate feeding and high-intensity exercise capacity: effects of timing of intake and carbohydrate concentration. Int J Sport Nutr Exerc Metab. 2014;24:258266. PubMed doi:10.1123/ijsnem.2013-0119

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jeukendrup AE, Killer SC. The myths surrounding pre-exercise carbohydrate feeding. Nutr Metab. 2010;57:1825. PubMed doi:10.1159/000322698

  • 22.

    Morton JP, Croft L, Bartlett JD, MacLaren DPM, Reilly T, Evans L, McArdle A, Drust B. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol. 2009;106:15131521. PubMed doi:10.1152/japplphysiol.00003.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3421 1748 121
Full Text Views 57 23 2
PDF Downloads 52 23 1