Rating of Perceived Exertion During Concentric and Eccentric Cycling: Are We Measuring Effort or Exertion?

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Despite the terms’ often being used interchangeably, it has been suggested that perceptions of effort and perceptions of exertion may differ. Eccentric (ECC) cycling may provide a model of exercise by which differences between these perceptions can be examined. Purpose: To examine and compare perceptions of effort and exertion during ECC and concentric (CONC) cycling at 4 intensities. Methods: Ten healthy male participants (mean [SD]: age = 29.8 [2.3] y) performed an incremental cycling test for the determination of maximal aerobic power output, followed in a randomized and crossover design, by four 5-min bouts (30%, 60%, 80%, and maximal) of either ECC or CONC cycling. Through each bout, participants were asked to report their perceived effort, exertion, and muscle pain. Heart rate and oxygen consumption were continuously recorded throughout each bout. Results: Perceived exertion was greater for CONC at 30% (8.5 [1.5] vs 7.1 [1.8]; P = .01), 60% (12.4 [1.4] vs 10.3 [2.0]; P = .01), 80% (15.8 [1.7] vs 12.4 [2.5]; P < .01), and maximal (17.2 [1.3] vs 15.6 [1.8]; P = .03) in comparison with ECC. Perceptions of effort and pain were similar between CONC and ECC. Heart rate and oxygen consumption were greater during CONC than ECC. Conclusions: Perceived exertion was greater during CONC compared with ECC cycling, yet effort was similar between conditions despite different physiological stress. Such findings have implications for understanding the development of such perceptions during exercise.

Peñailillo and Mackay are with Exercise Science Laboratory, School of Kinesiology, Finis Terrae University, Santiago, Chile. Abbiss is with Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.

Abbiss (c.abbiss@ecu.edu.au) is corresponding author.
  • 1.

    Abbiss CR, Laursen PB. Models to explain fatigue during prolonged endurance cycling. Sports Med. 2005;35(10):865–898. PubMed doi:10.2165/00007256-200535100-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392–400. PubMed doi:10.1136/bjsm.2008.050799

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    St. Clair Gibson A, Lambert EV, Rauch LHG, et al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705–722. PubMed doi:10.2165/00007256-200636080-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Hampson DB, St. Clair Gibson A, Lambert MI, Noakes TD. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med. 2001;31(13):935–952. PubMed doi:10.2165/00007256-200131130-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. PubMed doi:10.1249/00005768-198205000-00012

  • 6.

    Smirmaul Bde P. Sense of effort and other unpleasant sensations during exercise: clarifying concepts and mechanisms. Br J Sports Med. 2012;46(5):308–311. PubMed doi:10.1136/bjsm.2010.071407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Abbiss CR, Peiffer JJ, Meeusen R, Skorski S. Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring? Sports Med. 2015;45:1235–1243. PubMed doi:10.1007/s40279-015-0344-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Eston R. Use of ratings of perceived exertion in sports. Int J Sports Physiol Perform. 2012;7(2):175–182. PubMed doi:10.1123/ijspp.7.2.175

  • 9.

    Marcora S. Counterpoint: afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance. J Appl Physiol. 2010;108(2):454–456. PubMed doi:10.1152/japplphysiol.00976.2009a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nybo L. Commentaries on viewpoint: perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106(6):2064. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mauger AR. Factors affecting the regulation of pacing: current perspectives. Open Access J Sports Med. 2014;5:209–214. PubMed doi:10.2147/OAJSM.S38599

  • 12.

    Jones HS, Williams EL, Marchant D, et al. Distance-dependent association of affect with pacing strategy in cycling time trials. Med Sci Sports Exerc. 2015;47(4):825–832. PubMed doi:10.1249/MSS.0000000000000475

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Marcora S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106(6):2060–2062. PubMed doi:10.1152/japplphysiol.90378.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 2009;106(3), 857–864.

  • 15.

    Amann M, Secher NH. Point: afferent feedback from fatigued locomotor muscles is an important determinant of endurance exercise performance. J Appl Physiol. 2010;108(2):452–454. PubMed doi:10.1152/japplphysiol.00976.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pageaux B. Perception of effort in exercise science: definition, measurement and perspectives. Eur J Sport Sci. 2016;16(8):885–894. PubMed doi:10.1080/17461391.2016.1188992

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998:104.

  • 18.

    de Morree HM, Klein C, Marcora SM. Perception of effort reflects central motor command during movement execution. Psychophysiology. 2012;49(9):1242–1253. PubMed doi:10.1111/j.1469-8986.2012.01399.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Poulet JF, Hedwig B. New insights into corollary discharges mediated by identified neural pathways. Trends Neurosci. 2007;30(1):14–21. PubMed doi:10.1016/j.tins.2006.11.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bubic A, von Cramon DY, Schubotz RI. Prediction, cognition and the brain. Front Hum Neurosci. 2010;4:25. PubMed

  • 21.

    Luu BL, Day BL, Cole JD, Fitzpatrick RC. The fusimotor and reafferent origin of the sense of force and weight. J Physiol. 2011;589(pt 13):3135–3147. PubMed doi:10.1113/jphysiol.2011.208447

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Robertson RJ, Falkel JE, Drash AL, et al. Effect of blood pH on peripheral and central signals of perceived exertion. Med Sci Sports Exerc. 1986;18(1):114–122. PubMed doi:10.1249/00005768-198602000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Prusaczyk WK, Cureton KJ, Graham RE, Ray CA. Differential effects of dietary carbohydrate on RPE at the lactate and ventilatory thresholds. Med Sci Sports Exerc. 1992;24(5):568–575. PubMed doi:10.1249/00005768-199205000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ross ML, Jeacocke NA, Laursen PB, Martin DT, Abbiss CR, Burke LM. Effects of lowering body temperature via hyperhydration, with and without glycerol ingestion and practical precooling on cycling time trial performance in hot and humid conditions. J Int Soc Sports Nutr. 2012;9(1):55. PubMed doi:10.1186/1550-2783-9-55

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Swart J, Lindsay TR, Lambert MI, Brown JC, Noakes TD. Perceptual cues in the regulation of exercise performance—physical sensations of exercise and awareness of effort interact as separate cues. Br J Sports Med. 2012;46(1):42–48. PubMed doi:10.1136/bjsports-2011-090337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Faulkner JA. Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J Appl Physiol. 2003;95(2):455–459. PubMed doi:10.1152/japplphysiol.00280.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Abbott BC, Bigland B, Ritchie JM. The physiological cost of negative work. J Physiol. 1952;117(3):380–390. PubMed doi:10.1113/jphysiol.1952.sp004755

  • 28.

    Perrey S, Betik A, Candau R, Rouillon JD, Hughson RL. Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise. J Appl Physiol. 2001;91(5):2135–2142. PubMed doi:10.1152/jappl.2001.91.5.2135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Peñailillo L, Blazevich A, Numazawa H, Nosaka K. Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling. Med Sci Sports Exerc. 2013;45(9):1773–1781. PubMed doi:10.1249/MSS.0b013e31828f8a73

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lagally KM, Robertson RJ, Gallagher KI, et al. Perceived exertion, electromyography, and blood lactate during acute bouts of resistance exercise. Med Sci Sports Exerc. 2002;34(3):552–559. PubMed doi:10.1097/00005768-200203000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Penailillo L, Guzman N, Cangas J, Reyes A, Zbinden-Foncea H. Metabolic demand and muscle damage induced by eccentric cycling of knee extensor and flexor muscles. Eur J Sport Sci. 2017;17(2):179–187. PubMed doi:10.1080/17461391.2016.1217278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ross ML, Garvican LA, Jeacocke NA, et al. Novel precooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc. 2011;43(1):123–133. PubMed doi:10.1249/MSS.0b013e3181e93210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nosaka K, Clarkson PM. Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc. 1995;27(9):1263–1269. PubMed doi:10.1249/00005768-199509000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Aldayel A, Jubeau M, McGuigan MR, Nosaka K. Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors. Eur J Appl Physiol. 2010;108(4):709–717. PubMed doi:10.1007/s00421-009-1278-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    de Morree HM, Marcora SM. Effects of isolated locomotor muscle fatigue on pacing and time trial performance. Eur J Appl Physiol. 2013;113(9):2371–2380. PubMed doi:10.1007/s00421-013-2673-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Dufour SP, Lampert E, Doutreleau S, et al. Eccentric cycle exercise: training application of specific circulatory adjustments. Med Sci Sports Exerc. 2004;36(11):1900–1906. PubMed doi:10.1249/01.MSS.0000145441.80209.66

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Henriksson J, Knuttgen HG, Bonde-Petersen F. Perceived exertion during exercise with concentric and eccentric muscle contractions. Ergonomics. 1972;15(5):537–544. PubMed doi:10.1080/00140137208924455

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Turner MG. The Effects of Positive and Negative Work on Differentiated Ratings of Perceived Exertion. [Masters Research Thesis]. Laramie, WY: University of Wyoming; 1979.

    • Export Citation
  • 39.

    Carson RG, Riek S, Shahbazpour N. Central and peripheral mediation of human force sensation following eccentric or concentric contractions. J Physiol. 2002;539(pt 3):913–925. PubMed doi:10.1113/jphysiol.2001.013385

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 2007;37(12):1019–1028. PubMed doi:10.2165/00007256-200737120-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 98 98 14
Full Text Views 16 16 0
PDF Downloads 4 4 0