An Integrated, Multifactorial Approach to Periodization for Optimal Performance in Individual and Team Sports

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Sports periodization has traditionally focused on the exercise aspect of athletic preparation, while neglecting the integration of other elements that can impact an athlete’s readiness for peak competition performances. Integrated periodization allows the coordinated inclusion of multiple training components best suited for a given training phase into an athlete’s program. The aim of this article is to review the available evidence underpinning integrated periodization, focusing on exercise training, recovery, nutrition, psychological skills, and skill acquisition as key factors by which athletic preparation can be periodized. The periodization of heat and altitude adaptation, body composition, and physical therapy is also considered. Despite recent criticism, various methods of exercise training periodization can contribute to performance enhancement in a variety of elite individual and team sports, such as soccer. In the latter, both physical and strategic periodization are useful tools for managing the heavy travel schedule, fatigue, and injuries that occur throughout a competitive season. Recovery interventions should be periodized (ie, withheld or emphasized) to influence acute and chronic training adaptation and performance. Nutrient intake and timing in relation to exercise and as part of the periodization of an athlete’s training and competition calendar can also promote physiological adaptations and performance capacity. Psychological skills are a central component of athletic performance, and their periodization should cater to each athlete’s individual needs and the needs of the team. Skill acquisition can also be integrated into an athlete’s periodized training program to make a significant contribution to competition performance.

Mujika is with the Dept of Physiology, University of the Basque Country, Leioa, Basque Country, Spain, and the School of Kinesiology, Universidad Finis Terrae, Santiago, Chile. Halson is with Physiology, and Burke, Sports Nutrition, Australian Inst of Sport, Bruce, ACT, Australia. Burke is also with the Mary MacKillop Inst for Health Research, Australian Catholic University, Melbourne, VIC, Australia. Balagué is with the Dept of Psychology, University of Illinois at Chicago, Chicago, IL, USA. Farrow is with the Inst of Health and Sport, Victoria University, Melbourne, VIC, Australia, and  Movement Science, Australian Inst of Sport, Bruce, ACT, Australia.

Mujika (inigo.mujika@inigomujika.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Lambert MIMujika I. Physiology of exercise training. In: Hausswirth CMujika I eds. Recovery for Performance in Sport. Champaign, IL: Human Kinetics; 2013:38.

    • Search Google Scholar
    • Export Citation
  • 2.

    Bompa TO. Periodization Training: Theory and Methodology. 4th ed. Champaign, IL: Human Kinetics; 1999.

  • 3.

    Mujika I. The influence of training characteristics and tapering on the adaptation in highly trained individuals: a review. Int J Sports Med. 1998;19(7):439446. PubMed doi:10.1055/s-2007-971942

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Meeusen RDuclos MFoster Cet al. Prevention, diagnosis and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur J Sport Sci. 2013;13:124. doi:10.1080/17461391.2012.730061

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Norris SRSmith DJ. Planning, periodization, and sequencing of training and competition: the rationale for a competently planned, optimally executed training and competition program, supported by a multidisciplinary team. In: Kellmann M ed. Enhancing Recovery: Preventing Underperformance in Athletes. Champaign, IL: Human Kinetics; 2002:121141.

    • Search Google Scholar
    • Export Citation
  • 6.

    Lambert MIViljoen WBosch APearce AJSayers M. General principles of training. In: Schwellnus MP ed. Olympic Textbook of Medicine in SportChichester, UK: Blackwell Publishing2008; 148.

    • Search Google Scholar
    • Export Citation
  • 7.

    Issurin VB. New horizons for the methodology and physiology of training periodization. Sports Med. 2010;40:189206. PubMed doi:10.2165/11319770-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gambetta V. Periodization and the systematic sport development process. Olympic Coach 2004;16(2):813.

  • 9.

    Plisk S. Periodization: fancy name for a basic concept. Olympic Coach. 2004;16(2):1418.

  • 10.

    Mujika IOrbañanos JSalazar H. Physiology and training of a world-champion paratriathlete. Int J Sports Physiol Perform. 2015;10(7):927930. PubMed doi:10.1123/ijspp.2014-0487

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kenneally MCasado ASantos-Concejero J. The effect of periodisation and training intensity distribution on middle- and long-distance running performance: a systematic review [published online ahead of print November 28 2017]. Int J Sports Physiol Perform. doi:10.1123/ijspp.2017-0327

    • Search Google Scholar
    • Export Citation
  • 12.

    Matveyev LP. Fundamentals of Sport Training. Moscow, Russia: Progress Publishers; 1981.

  • 13.

    Kiely J. Periodization paradigms in the 21st century: evidence-led or tradition-driven? Int J Sports Physiol Perform. 2012;7(3):242250. PubMed doi:10.1123/ijspp.7.3.242

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Harre D. Principles of Sports Training: Introduction to the Theory and Methods of Training. 1st ed. Berlin: Sportverlag; 1982.

  • 15.

    Brown LE. Nonlinear versus linear periodization models. Strength Cond J. 2001;23(1):4244.

  • 16.

    Brown LEGreenwood M. Periodization essentials and innovations in resistance training protocols. Strength Cond J. 2005;27(4):8085. doi:10.1519/00126548-200508000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Riewald S. Periodization and planning. In: Riewald SRodeo S eds. Science of Swimming Faster. Champaign, IL: Human Kinetics; 2015:173198.

    • Search Google Scholar
    • Export Citation
  • 18.

    Painter KBHaff GGRamsey MWet al. Strength gains: block versus daily undulating periodization weight training among track and field athletes. Int J Sports Physiol Perform. 2012;7(2):161169. PubMed doi:10.1123/ijspp.7.2.161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hartmann HWirth KKeiner MMickel CSander ASzilvas E. Short-term periodization models: effects on strength and speed-strength performance. Sports Med. 2015;45(10):13731386. PubMed doi:10.1007/s40279-015-0355-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Williams TDTolusso DVFedewa MVEsco MR. Comparison of periodized and non-periodized resistance training on maximal strength: a meta-analysis. Sports Med. 2017;47(10):20832100. PubMed doi:10.1007/s40279-017-0734-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tønnessen ESylta ØHaugen TAHem ESvendsen ISSeiler S. The road to gold: training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS ONE. 2014;9(7):101796. doi:10.1371/journal.pone.0101796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Rønnestad BRHansen JThyli VBakken TASandbakk Ø. 5-week block periodization increases aerobic power in elite cross-country skiers. Scand J Med Sci Sports. 2016;26(2):140146. doi:10.1111/sms.12418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rønnestad BREllefsen SNygaard Het al. Effects of 12 weeks of block periodization on performance and performance indices in well-trained cyclists. Scand J Med Sci Sports. 2014;24(2):327335. doi:10.1111/sms.12016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Rønnestad BRHansen JEllefsen S. Block periodization of high-intensity aerobic intervals provides superior training effects in trained cyclists. Scand J Med Sci Sports. 2014;24(1):3442. doi:10.1111/j.1600-0838.2012.01485.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sylta ØTønnessen EHammarström Det al. The effect of different high-intensity periodization models on endurance adaptations. Med Sci Sports Exerc. 2016;48(11):21652174. PubMed doi:10.1249/MSS.0000000000001007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Rønnestad BRHansen J. A scientific approach to improve physiological capacity of an elite cyclist. Int J Sports Physiol Perform. 2018;13(3):390393.

  • 27.

    García-Pallarés JSánchez-Medina LCarrasco LDíaz AIzquierdo M. Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. Eur J Appl Physiol. 2009;106(4):629638. doi:10.1007/s00421-009-1061-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    García-Pallarés JGarcía-Fernández MSánchez-Medina LIzquierdo M. Performance changes in world-class kayakers following two different training periodization models. Eur J Appl Physiol. 2010;110(1):99107. doi:10.1007/s00421-010-1484-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Tønnessen ESvendsen ISRønnestad BRHisdal JHaugen TASeiler S. The annual training periodization of 8 world champions in orienteering. Int J Sports Physiol Perform. 2015;10(1):2938. doi:10.1123/ijspp.2014-0005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bezodis INKerwin DGCooper SMSalo AIT. Sprint running performance and technique changes in athletes during periodized training: an elite training group case study [published online ahead of print November 15 2017]. Int J Sports Physiol Perform. doi:10.1123/ijspp.2017-0378

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Pyne D. The periodization of swimming training at the Australian Institute of Sport. Sports Coach. 1996;18:3438.

  • 32.

    Hellard PScordia CAvalos MMujika IPyne DB. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers. Appl Physiol Nutr Metab. 2017;42(10):11061117. PubMed doi:10.1139/apnm-2017-0180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Fernandez-Fernandez JSanz-Rivas DSarabia JMMoya M. Preseason training: the effects of a 17-day high-intensity shock microcycle in elite tennis players. J Sports Sci Med. 2015;14(4):783791. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lambert MIMujika I. Overtraining prevention. In: Hausswirth CMujika I eds. Recovery for Performance in Sport. Champaign, IL: Human Kinetics; 2013:2328.

    • Search Google Scholar
    • Export Citation
  • 35.

    Issurin V. Block periodization versus traditional training theory: a review. J Sports Med Phys Fitness. 2008;48(1):6575. PubMed

  • 36.

    Issurin VB. Benefits and limitations of block periodized training approaches to athletes’ preparation: a review. Sports Med. 2016;46(3):329338. PubMed doi:10.1007/s40279-015-0425-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Lorenz DMorrison S. Current concepts in periodization of strength and conditioning for the sports physical therapist. Int J Sports Phys Ther. 2015;10(6):734747. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Plisk SSStone MH. Periodization strategies. Strength Cond J. 2003;25(6):1937. doi:10.1519/00126548-200312000-00005

  • 39.

    Smith DJ. A framework for understanding the training process leading to elite performance. Sports Med. 2003;33(15):11031126. PubMed doi:10.2165/00007256-200333150-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Turner A. The science and practice of periodization: a brief review. Strength Cond J. 2011;33(1):3446. doi:10.1519/SSC.0b013e3182079cdf

  • 41.

    Racinais SAlonso JMCoutts AJet al. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports. 2015;25(suppl 1):619. doi:10.1111/sms.12467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Casadio JRKilding AESiegel RCotter JDLaursen PB. Periodizing heat acclimation in elite Laser sailors preparing for a world championship event in hot conditions. Temperature. 2016;3(3):437443. doi:10.1080/23328940.2016.1184367

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Casadio JRKilding AECotter JDLaursen PB. From lab to real world: heat acclimation considerations for elite athletes. Sports Med. 2017;47(8):14671476. PubMed doi:10.1007/s40279-016-0668-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Bailey DMDavies B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med. 1997;31(3):183190. PubMed doi:10.1136/bjsm.31.3.183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Friedmann BFrese FMenold EKauper FJost JBärtsch P. Individual variation in the erythropoietic response to altitude training in elite junior swimmers. Br J Sports Med. 2005;39(3):148153. PubMed doi:10.1136/bjsm.2003.011387

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Gore CJClark SASaunders PU. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc. 2007;39(9):16001609. PubMed doi:10.1249/mss.0b013e3180de49d3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Wilber RLStray-Gundersen JLevine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):15901599. PubMed doi:10.1249/mss.0b013e3180de49bd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Mazzeo RS. Physiological responses to exercise at altitude: an update. Sports Med. 2008;38(1):18. PubMed doi:10.2165/00007256-200838010-00001

  • 49.

    Bonetti DLHopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107127. PubMed doi:10.2165/00007256-200939020-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Fulco CSMuza SRBeidleman Bet al. Exercise performance of sea-level residents at 4300 m after 6 days at 2200 m. Aviat Space Environ Med. 2009;80(11):955961. PubMed doi:10.3357/ASEM.2540.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Saunders PUPyne DBGore CJ. Endurance training at altitude. High Alt Med Biol. 2009;10(2):135148. PubMed doi:10.1089/ham.2008.1092

  • 52.

    Muza SRBeidleman BAFulco CS. Altitude preexposure recommendations for inducing acclimatization. High Alt Med Biol. 2010;11(2):8792. PubMed doi:10.1089/ham.2010.1006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Schmidt WPrommer N. Impact of alterations in total hemoglobin mass on VO2max. Exerc Sport Sci Rev. 2010;38(2):6875. PubMed doi:10.1097/JES.0b013e3181d4957a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Fulco CSBeidleman BAMuza SR. Effectiveness of preacclimatization strategies for high-altitude exposure. Exerc Sport Sci Rev. 2013;41(1):5563. PubMed doi:10.1097/JES.0b013e31825eaa33

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Staab JEBeidleman BAMuza SRFulco CSRock PBCymerman A. Efficacy of residence at moderate versus low altitude on reducing acute mountain sickness in men following rapid ascent to 4300 m. High Alt Med Biol. 2013;14(1):1318. PubMed doi:10.1089/ham.2012.1065

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Wachsmuth NBVölzke CPrommer Net al. The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physiol. 2013;113(5):11991211. PubMed doi:10.1007/s00421-012-2536-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Bonne TCLundby CJørgensen Set al. “Live High-Train High” increases hemoglobin mass in Olympic swimmers. Eur J Appl Physiol. 2014;114(7):14391449. PubMed doi:10.1007/s00421-014-2863-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Chapman RF. The individual response to training and competition at altitude. Br J Sports Med. 2013;47(suppl 1):i4044. doi:10.1136/bjsports-2013-092837

  • 59.

    Chapman RFLaymon Stickford ASLundby CLevine BD. Timing of return from altitude training for optimal sea level performance. J Appl Physiol. 2014;116(7):837843. doi:10.1152/japplphysiol.00663.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Sperlich BAchtzehn Sde Marées Mvon Papen HMester J. Load management in elite German distance runners during 3-weeks of high-altitude training. Physiol Rep. 2016;4(12):e12845. PubMed doi:10.14814/phy2.12845

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Song AZhang YHan Let al. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nat Commun. 2017;8:14108. PubMed doi:10.1038/ncomms14108

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Millet GPRoels BSchmitt LWoorons XRichalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):125. PubMed doi:10.2165/11317920-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Stellingwerff T. Case-study: body composition periodization in an Olympic-level female middle-distance runner over a 9-year career. Int J Sport Nutr Exerc Metab. 2017;15:119. PubMed doi:10.1123/ijsnem.2017-0312

    • Search Google Scholar
    • Export Citation
  • 64.

    Hoover DLVanWye WRJudge LW. Periodization and physical therapy: bridging the gap between training and rehabilitation. Phys Ther Sport. 2016;18:120. PubMed doi:10.1016/j.ptsp.2015.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Verchoshanskij JV. The end of “periodisation” of training in top-class sport. New Stud Athl. 1999;14(2):4755.

  • 66.

    Kiely J. Periodization theory: confronting an inconvenient truth. Sports Med. 2018;48(4):753764. PubMed doi:10.1007/s40279-017-0823-y

  • 67.

    Loturco INakamura FY. Training periodization. An obsolete methodology? Aspetar Sports Med J. 2016;5(1):110115.

  • 68.

    Afonso JNikolaidis PTSousa PMesquita I. Is empirical research on periodization trustworthy? A comprehensive review of conceptual and methodological issues. J Sports Sci Med. 2017;16(1):2734. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Mujika I. Thoughts and considerations for team-sport peaking. Olympic Coach. 2007;18(4):911.

  • 70.

    Mujika IPadilla SPyne DBusso T. Physiological changes associated with the pre-event taper in athletes. Sports Med. 2004;34:891927. PubMed doi:10.2165/00007256-200434130-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Bosquet LMontpetit JArvisais DMujika I. Effects of tapering on performance: a meta-analysis. Med Sci Sports Exerc. 2007;39(8):13581365. PubMed doi:10.1249/mss.0b013e31806010e0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Pritchard HKeogh JBarnes MMcGuigan M. Effects and mechanisms of tapering in maximizing muscular strength. Strength Cond J. 2015;37(2):7283. doi:10.1519/SSC.0000000000000125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Gamble P. Periodization of training for team sport athletes. Strength Cond J. 2006;28:5566. doi:10.1519/00126548-200606000-00009

  • 74.

    Moreira ABilsborough JCSullivan CJCiancosi MAoki MSCoutts AJ. Training periodization of professional Australian football players during an entire Australian Football League season. Int J Sports Physiol Perform. 2015;10(5):566571. PubMed doi:10.1123/ijspp.2014-0326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Ritchie DHopkins WGBuchheit MCordy JBartlett JD. Quantification of training and competition load across a season in an elite Australian football club. Int J Sports Physiol Perform. 2016;11(4):474479. PubMed doi:10.1123/ijspp.2015-0294

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Bangsbo JMohr MPoulsen APerez-Gomez JKrustrup P. Training and testing the elite athlete. J Exerc Sci Fit. 2006;4:114.

  • 77.

    Beltran-Valls MRCamarero-López GBeltran-Garrido JVCecilia-Gallego P. Effects of a tapering period on physical condition in soccer players [published online ahead of print July12 2017]. J Strength Cond Res. PubMed doi:10.1519/JSC.0000000000002138

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Coutts AReaburn PPiva TJMurphy A. Changes in selected biochemical, muscular strength, power, and endurance measures during deliberate overreaching and tapering in rugby league players. Int J Sports Med. 2007;28(2):116124. PubMed doi:10.1055/s-2006-924145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    de Lacey JBrughelli MMcGuigan MHansen KSamozino PMorin JB. The effects of tapering on power-force-velocity profiling and jump performance in professional rugby league players. J Strength Cond Res. 2014;28(12):35673570. PubMed doi:10.1519/JSC.0000000000000572

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Bouaziz TMakni EPasselergue Pet al. Multifactorial monitoring of training load in elite rugby sevens players: cortisol/cortisone ratio as a valid tool of training load monitoring. Biol Sport. 2016;33(3):231239. PubMed doi:10.5604/20831862.1201812

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Marrier BRobineau JPiscione Jet al. Supercompensation kinetics of physical qualities during a taper in team sport athletes. Int J Sports Physiol Perform. 2017;12(9):11631169. PubMed doi:10.1123/ijspp.2016-0607

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Nunes JAMoreira ACrewther BTNosaka KViveiros LAoki MS. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program. J Strength Cond Res. 2014;28(10):29732980. PubMed doi:10.1519/JSC.0000000000000499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Manzi VD’Ottavio SImpellizzeri FMChaouachiAChamari KCastagna C. Profile of weekly training load in elite male professional basketball players. J Strength Cond Res. 2010;24(5):13991406. PubMed doi:10.1519/JSC.0b013e3181d7552a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Mara JKThompson KGPumpa KLBall NB. Periodization and physical performance in elite female soccer players. Int J Sports Physiol Perform. 2015;10(5):664669. PubMed doi:10.1123/ijspp.2014-0345

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Fessi MSZarrouk NDi Salvo VFiletti CBarker ARMoalla W. Effects of tapering on physical match activities in professional soccer players. J Sports Sci. 2016;34(24):21892194. PubMed doi:10.1080/02640414.2016.1171891

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Mallo J. Effect of block periodization on performance in competition in a soccer team during four consecutive seasons: a case study. Int J Perform Anal Sport. 2011;11:476485. doi:10.1080/24748668.2011.11868566

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Mujika IPadilla S. Detraining: loss of training-induced physiological and performance adaptations. Part I: short term insufficient training stimulus. Sports Med. 2000;30(2):7987. PubMed doi:10.2165/00007256-200030020-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Mujika IPadilla S. Detraining: loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus. Sports Med. 2000;30(3):145154. PubMed doi:10.2165/00007256-200030030-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Mujika IPadilla S. Physiological and performance consequences of training cessation in athletes: detraining. In: Frontera WR ed. Rehabilitation of Sports Injuries: Scientific Basis. Malden, MA: Blackwell Science; 2003:117143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Silva JRBrito JAkenhead RNassis GP. The transition period in soccer: a window of opportunity. Sports Med. 2016;46(3):305313. PubMed doi:10.1007/s40279-015-0419-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Bangsbo JMohr MKrustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci. 2006;24(7):665674. PubMed doi:10.1080/02640410500482529

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Kelly VGCoutts AJ. Planning and monitoring training loads during the competition phase in team sports. Strength Cond J. 2007;29:3237. doi:10.1519/00126548-200708000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Robertson SJJoyce DG. Informing in-season tactical periodisation in team sport: development of a match difficulty index for Super Rugby. J Sports Sci. 2015;33(1):99107. PubMed doi:10.1080/02640414.2014.925572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Robertson SJoyce D. Evaluating strategic periodisation in team sport. J Sports Sci. 2018;36(3):279285. PubMed doi:10.1080/02640414.2017.1300315

  • 95.

    Cormack S. The effect of regular travel on periodisation. Strength Cond Coach. 2001;9:1924.

  • 96.

    Delgado-Bordonau JLMendez-Villanueva A. Tactical periodization: Mourinho’s best kept secret? Soccer J. 2012;57(3):2834.

  • 97.

    Born DPSperlich BHolmberg HC. Bringing light into the dark: effects of compression clothing on performance and recovery. Int J Sports Physiol Perform. 2013;8(1):418. PubMed doi:10.1123/ijspp.8.1.4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Halson SL. Does the time frame between exercise influence the effectiveness of hydrotherapy for recovery? Int J Sports Physiol Perform. 2011;6(2):147159. PubMed doi:10.1123/ijspp.6.2.147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Hausswirth CLouis JBieuzen Fet al. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners. PLoS ONE. 2011;6(12):e27749. PubMed doi:10.1371/journal.pone.0027749

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Hill JHowatson Gvan Someren KLeeder JPedlar C. Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. Br J Sports Med. 2014;48(18):13401346. PubMed doi:10.1136/bjsports-2013-092456

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Leeder JGissane Cvan Someren KGregson WHowatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233240. PubMed doi:10.1136/bjsports-2011-090061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Poppendieck WFaude OWegmann MMeyer T. Cooling and performance recovery of trained athletes: a meta-analytical review. Int J Sports Physiol Perform. 2013;8(3):227242. PubMed doi:10.1123/ijspp.8.3.227

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Poppendieck WWegmann MFerrauti AKellmann MPfeiffer MMeyer T. Massage and performance recovery: a meta-analytical review. Sports Med. 2016;46(2):183204. PubMed doi:10.1007/s40279-015-0420-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Fröhlich MFaude OKlein MPieter AEmrich EMeyer T. Strength training adaptations after cold-water immersion. J Strength Cond Res. 2014;28(9):26282633. doi:10.1519/JSC.0000000000000434

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Halson SLBartram JWest Net al. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014;46(8):16311639. PubMed doi:10.1249/MSS.0000000000000268

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Roberts LARaastad TMarkworth JFet al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):42854301. PubMed doi:10.1113/JP270570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Tipton MJCollier NMassey HCorbett JHarper M. Cold water immersion: kill or cure? Exp Physiol. 2017;102(11):13351355. PubMed doi:10.1113/EP086283

  • 108.

    Versey NGHalson SLDawson BT. Water immersion recovery for athletes: effect on exercise performance and practical recommendations. Sports Med. 2013;43(11):11011130. PubMed doi:10.1007/s40279-013-0063-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Stephens JMHalson SMiller JSlater GJAskew CD. Cold-water immersion for athletic recovery: one size does not fit all. Int J Sports Physiol Perform. 2017;12(1):29. PubMed doi:10.1123/ijspp.2016-0095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Yamane MTeruya HNakano MOgai ROhnishi NKosaka M. Post-exercise leg and forearm flexor muscle cooling in humans attenuates endurance and resistance training effects on muscle performance and on circulatory adaptation. Eur J Appl Physiol. 2006;96(5):572580. PubMed doi:10.1007/s00421-005-0095-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Yamane MOhnishi NMatsumoto T. Does regular post-exercise cold application attenuate trained muscle adaptation? Int J Sports Med. 2015;36(8):647653. PubMed doi:10.1055/s-0034-1398652

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Howatson GGoodall Svan Someren KA. The influence of cold water immersions on adaptation following a single bout of damaging exercise. Eur J Appl Physiol. 2009;105(4):615621. PubMed doi:10.1007/s00421-008-0941-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Broatch JRPetersen ABishop DJ. Cold-water immersion following sprint interval training does not alter endurance signaling pathways or training adaptations in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2017;313(4):R372R384. doi:10.1152/ajpregu.00434.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Nemet DMeckel YBar-Sela SZaldivar FCooper DMEliakim A. Effect of local cold-pack application on systemic anabolic and inflammatory response to sprint-interval training: a prospective comparative trial. Eur J Appl Physiol. 2009;107(4):411417. PubMed doi:10.1007/s00421-009-1138-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Ihsan MMarkworth JFWatson Get al. Regular postexercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2015;309(3):R286R294. PubMed doi:10.1152/ajpregu.00031.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Fowler PMKnez WCrowcroft Set al. Greater effect of East versus West travel on jet lag, sleep, and team sport performance. Med Sci Sports Exerc. 2017;49(12):25482561. PubMed doi:10.1249/MSS.0000000000001374

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Halson SLMartin DT. Lying to win-placebos and sport science. Int J Sports Physiol Perform. 2013;8(6):597599. PubMed doi:10.1123/ijspp.8.6.597

  • 118.

    Mountjoy MSundgot-Borgen JBurke Let al. The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491497. PubMed doi:10.1136/bjsports-2014-093502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Burke LM. Practical issues in evidence-based use of performance supplements: supplement interactions, repeated use and individual responses. Sports Med. 2017;47(suppl 1):79100. PubMed doi:10.1007/s40279-017-0687-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Burke LMaughan R. Sports nutrition and therapy. In: Zachazewski JEMagee DJ eds. Handbook of Sports Medicine and Science: Sports Therapy Services: Organization and Operations. Chichester, UK: John Wiley & Sons, Ltd; 2012.

    • Search Google Scholar
    • Export Citation
  • 121.

    Baar K. Training and nutrition to prevent soft tissue injuries and accelerate return to play. Sports Sci Exch. 2015;28(142):16.

  • 122.

    Kelley DEGoodpaster BHStorlien L. Muscle triglyceride and insulin resistance. Annu Rev Nutr. 2002;22(1):325346. PubMed doi:10.1146/annurev.nutr.22.010402.102912

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Bergstrom JHermansen LHultman ESaltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71:140150. PubMed doi:10.1111/j.1748-1716.1967.tb03720.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Coyle EFCoggan ARHemmert MKIvy JL. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165172. PubMed doi:10.1152/jappl.1986.61.1.165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Burke LMAngus DJCox GRet al. Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J Appl Physiol. 2000;89:24132421. PubMed doi:10.1152/jappl.2000.89.6.2413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Burke LMHawley JAAngus DJet al. Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Med Sci Sports Exerc. 2002;34:8391. PubMed doi:10.1097/00005768-200201000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Carey ALStaudacher HMCummings NKet al. Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise. J Appl Physiol. 2001;91(1):115122. PubMed doi:10.1152/jappl.2001.91.1.115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Burke LM. Re-examining high-fat diets for sports performance: did we call the ‘nail in the coffin’ too soon? Sports Med. 2015;45 (suppl 1):3349. doi:10.1007/s40279-015-0393-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129.

    Stellingwerff TSpriet LLWatt KJet al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab. 2006;290:E380E388. PubMed doi:10.1152/ajpendo.00268.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Havemann LWest SGoedecke JHet al. Fat adaptation followed by carbohydrate-loading compromises high-intensity sprint performance. J Appl Physiol. 2006;100:194202. PubMed doi:10.1152/japplphysiol.00813.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Volek JPhinney S. The art and science of low carbohydrate performance. Miami, FL: Beyond Obesity, LLC; 2011.

  • 132.

    Jeukendrup AE. Periodized nutrition for athletes. Sports Med. 2017;47(suppl 1):5163. PubMed doi:10.1007/s40279-017-0694-2

  • 133.

    Braakhuis AJHopkins WG. Impact of dietary antioxidants on sport performance: a review. Sports Med. 2015;45(7):939955. PubMed doi:10.1007/s40279-015-0323-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Cheuvront SNKenefick RW. Dehydration: physiology, assessment, and performance effects. Comp Physiol. 2014;4(1):25785.

  • 135.

    Garrett ATGoosens NGRehrer NJet al. Short-term heat acclimation is effective and may be enhanced rather than impaired by dehydration. Am J Hum Biol. 2014;26(3):311320. PubMed doi:10.1002/ajhb.22509

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Coyle EF. Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. J Sports Sci. 1991;9(special issue):2952. doi:10.1080/02640419108729865

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Thomas DTErdman KABurke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501528. PubMed doi:10.1016/j.jand.2015.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Jeukendrup AE. Training the gut for athletes. Sports Med. 2017;47(suppl 1):101110. PubMed doi:10.1007/s40279-017-0690-6

  • 139.

    Philp AHargreaves MBaar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab. 2012;302(11):E1343E1351. PubMed doi:10.1152/ajpendo.00004.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Bartlett JDHawley JAMorton JP. Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci. 2015;15:312. PubMed doi:10.1080/17461391.2014.920926

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Yeo WKMcGee SLCarey ALet al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. 2009;95(2):351358. PubMed doi:10.1113/expphysiol.2009.049353

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Hulston CJVenables MCMann CHet al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc. 2010;42:20462055. PubMed doi:10.1249/MSS.0b013e3181dd5070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Cox GRClark SACox AJet al. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol. 2010;109(1):126134. PubMed doi:10.1152/japplphysiol.00950.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Bartlett JDLouhelainen JIqbal Zet al. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol. 2013;304:R450R458. doi:10.1152/ajpregu.00498.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Lane SCCamera DMLassiter DGet al. Effects of sleeping with reduced carbohydrate availability on acute training responses. J Appl Physiol. 2015;119:643655. PubMed doi:10.1152/japplphysiol.00857.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Marquet LABrisswalter JLouis Jet al. Enhanced endurance performance by periodization of carbohydrate intake: “sleep low” strategy. Med Sci Sports Exerc. 2016;48:663672. PubMed doi:10.1249/MSS.0000000000000823

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Marquet LAHausswirth CMolle Oet al. Periodization of carbohydrate intake: short-term effect on performance. Nutrients. 2016;8(12):755. PubMed doi:10.3390/nu8120755

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 148.

    Stellingwerff T. Contemporary nutrition approaches to optimize elite marathon performance. Int J Sports Physiol Perform. 2013;8:573578. PubMed doi:10.1123/ijspp.8.5.573

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Burke LMRoss MLGarvican-Lewis LAet al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol. 2017;595(9):27852807. PubMed doi:10.1113/JP273230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Gejl KDThams LHansen Met al. No superior adaptations to carbohydrate periodization in elite endurance athletes. Med Sci Sports Exerc. 2017;49(12):24862497. PubMed doi:10.1249/MSS.0000000000001377

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Jensen LGejl KDOrtenblad Net al. Carbohydrate restricted recovery from long-term endurance exercise does not affect gene responses involved in mitochondrial biogenesis in highly trained athletes. Physiol Rep. 2015;3(2):e12184. PubMed doi:10.14814/phy2.12184

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Phillips SM. A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Med. 2014;44 (suppl 1):7177. doi:10.1007/s40279-014-0152-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 153.

    Burd NAWest DWMoore DRet al. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr. 2011;141(4):568573. PubMed doi:10.3945/jn.110.135038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Biolo GTipton KDKlein SWolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;273:E122E129. doi:10.1152/ajpendo.1997.273.1.E122

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Moore DRRobinson MJFry JLet al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161168. PubMed doi:10.3945/ajcn.2008.26401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Areta JLBurke LMRoss MLet al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591(9):23192331. doi:10.1113/jphysiol.2012.244897

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Snijders TRes PRSmeets JSet al. Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. J Nutr. 2015;145(6):11781184. doi:10.3945/jn.114.208371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Bacon T. The planning and integration of mental training programs. SPORTS Sci Period Res Technol Sport. 1989;10(1):18.

  • 159.

    Loehr JE. The ideal performance state. SPORTS Sci Period Res Technol Sport. 1983;1:18.

  • 160.

    Suinn RM. Seven Steps to Peak Performance: The Mental Training Manual for Athletes. Toronto, Canada: Hans Huber; 1986.

  • 161.

    Boutcher SHRotella RJ. A psychological skills educational program for closed-skill performance enhancement. Sport Psychol. 1987;1(2):127137. doi:10.1123/tsp.1.2.127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 162.

    Balague G. Periodization of mental skills training. J Sci Med Sport. 2000;3:230237. PubMed doi:10.1016/S1440-2440(00)80031-6

  • 163.

    Vealey RS. Future directions in psychological skills training. Sport Psychol. 1988;2(4): 318336. doi:10.1123/tsp.2.4.318

  • 164.

    Hammermeister JVonGuenthner S. Sport psychology: training the mind for competition. Curr Sports Med Rep. 2005;4:160164. PubMed doi:10.1097/01.CSMR.0000306200.41691.40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Burton DHammermeister JJHolliday BNaylor S. Issues and future directions in periodization of mental training. In: Periodization of mental training: Smoke and Mirrors or Wave of the Future? Proceedings of the Association for the Advancement of Applied Sport Psychology; October 18–222000; Nashville, TN.

    • Search Google Scholar
    • Export Citation
  • 166.

    Hammermeister JJ. Impact of a periodized MST program on the enjoyment and quality of mental training for US Nordic skiers and coaches. Proceedings of the Association for the Advancement of Applied Sport Psychology; October 18–222000; Nashville, TN.

    • Export Citation
  • 167.

    Holliday B. Hitting Past the Block: Examining How a Periodized Mental Skills Training Program Can Overcome Mental Training Obstacles and Maximize Volleyball Mental Toughness. [dissertation]. Moscow, ID: University of Idaho; 2007.

    • Search Google Scholar
    • Export Citation
  • 168.

    Prochaska JODiClemente CC. Stages of change in the modification of problem behaviors. Prog Behav Modif. 1992;28:183218. PubMed

  • 169.

    Stonecypher JLeitzelar BJudge LW. Creation and instruction of a coach-implemented mental periodization plan. J Sport. 2015;4(2):1225.

    • Search Google Scholar
    • Export Citation
  • 170.

    Judge LWGilreath E. A mental plan. Techniques. 2011;5(1):2434.

  • 171.

    Tuckman BW. Developmental sequence in small groups. Psychol Bull. 1965;63(6):384399. doi:10.1037/h0022100

  • 172.

    Duckworth ALPeterson CMatthews MDKelly DR. Grit: perseverance and passion for long-term goals. J Pers Soc Psychol. 2007;92(6):10871101. PubMed doi:10.1037/0022-3514.92.6.1087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Jones G. The role of superior performance intelligence in sustained success. In: Murphy S ed. The Oxford Handbook of Sport and Performance Psychology. New York, NY: Oxford University Press; 2012.

    • Search Google Scholar
    • Export Citation
  • 174.

    Hodges NJWilliams AM. Skill Acquisition in Sport. 2nd ed. Abingdon, UK: Routledge; 2012.

  • 175.

    Farrow DBaker JMacMahon C. Developing Sport Expertise. 2nd ed. Abingdon, UK: Routledge; 2013.

  • 176.

    Magill RAnderson D. Motor Learning: Concepts and Applications. 11th ed. Maidenhead, UK: McGraw-Hill Education; 2017.

  • 177.

    Carson HJCollins D. Refining and regaining skills in fixation/diversification stage performers: The Five-A Model. Int Rev Sport Exerc Psychol. 2011;4:146167. doi:10.1080/1750984X.2011.613682

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 178.

    Vickers JNLivingston LFUmeris-Bohnert Set al. Decision training: the effects of complex instruction, variable practice and reduced delayed feedback on the acquisition and transfer of a motor skill. J Sports Sci. 1999;17:357367. PubMed doi:10.1080/026404199365876

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Ericsson KAKrampe RTTesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363406. doi:10.1037/0033-295X.100.3.363

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 180.

    Guadagnoli MALee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Motor Behav. 2004;36:212224. doi:10.3200/JMBR.36.2.212-224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 181.

    Farrow DRobertson S. Development of a skill acquisition periodisation framework for high-performance sport. Sports Med. 2017;47(6):10431054. PubMed doi:10.1007/s40279-016-0646-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Grout HLong G. Improving Teaching and Learning in Physical Education. Maidenhead, UK: McGraw-Hill Education; 2009.

  • 183.

    Lee TDSwinnen SSerrien D. Cognitive effort and motor learning. Quest. 1994;46:328344. doi:10.1080/00336297.1994.10484130

  • 184.

    Ford PRCoughlan EKHodges NJet al. Deliberate practice in sport. In: Baker JFarrow D eds. Routledge Handbook of Sport Expertise. Abingdon, UK: Routledge; 2015:347362.

    • Search Google Scholar
    • Export Citation
  • 185.

    Pinder RADavids KWRenshaw Iet al. Representative learning design and functionality of research and practice in sport. J Sport Exerc Psychol. 2011;33:146155. doi:10.1123/jsep.33.1.146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 186.

    Marcora SMStaiano WManning V. Mental fatigue impairs physical performance in humans. J Appl Phys. 2009;106:857864.

  • 187.

    Brady F. A theoretical and empirical review of the contextual interference effect and the learning of motor skills. Quest. 1998;50:266293. doi:10.1080/00336297.1998.10484285

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 2668 2668 756
Full Text Views 137 137 47
PDF Downloads 85 85 38
Altmetric Badge
PubMed
Google Scholar
Cited By