Neuromuscular Responses to Conditioned Soccer Sessions Assessed via GPS-Embedded Accelerometers: Insights Into Tactical Periodization

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Martin Buchheit
Search for other papers by Martin Buchheit in
Current site
Google Scholar
PubMed
Close
,
Mathieu Lacome
Search for other papers by Mathieu Lacome in
Current site
Google Scholar
PubMed
Close
,
Yannick Cholley
Search for other papers by Yannick Cholley in
Current site
Google Scholar
PubMed
Close
, and
Ben Michael Simpson
Search for other papers by Ben Michael Simpson in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To examine the reliability of field-based running-specific measures of neuromuscular function assessed using global positioning system (GPS)–embedded accelerometers and their responses to 3 typical conditioned sessions (ie, strength, endurance, and speed) in elite soccer players. Methods: Before and immediately after each session, vertical jump (countermovement jump [CMJ]) and adductor squeeze strength (groin) performances were recorded. Players also performed a 4-min run at 12 km/h followed by four ∼60-m runs (run = 12 s, r = 33 s). GPS (5 Hz) and accelerometer (100 Hz) data collected during the 4 runs and the recovery periods, excluding the last recovery period, were used to derive vertical stiffness (K), peak loading force (peak force over all the foot strikes [Fpeak]), and propulsion efficiency (ie, the ratio between velocity and force loads [Vl/Fl]). Results: Typical errors were small (CMJ, groin, K, and Vl/Fl) and moderate (Fpeak), with moderate (Fpeak), high (K and Vl/Fl), and very high ICCs (CMJ and groin). After all sessions, there were small decreases in groin and increases in K, but changes in F were all unclear. By contrast, the CMJ and Vl/Fl ratio responses were session dependent. There was a small increase in CMJ after speed and endurance, but unclear changes after strength; the Vl/Fl ratio increased substantially after strength, but there were a small and a moderate decrease after endurance and speed, respectively. Conclusions: Running-specific measures of neuromuscular function assessed in the field via GPS-embedded accelerometers show acceptable levels of reliability. Although the 3 sessions examined may be associated with limited neuromuscular fatigue, changes in neuromuscular performance and propulsion efficiency are likely session-objective dependent.

The authors are with the Performance Dept, Paris Saint-Germain Football Club, Saint-Germain-en-Laye, France.

Buchheit (mbuchheit@psg.fr) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Delgado-Bordonau JL, Mendez-Villanueva A. The tactical periodization model. In: Van Winckel J, Tenney D, Helsen W, McMillan K, Meert J-P, Bradley P, eds. Fitness in Soccer: The Science and Practical Application. Moveo Ergo Sum; 2014.

    • Search Google Scholar
    • Export Citation
  • 2.

    Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44(6):743762. PubMed doi:10.1007/s40279-014-0162-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927954. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lehnert M, De Ste Croix M, Zaatar A, Hughes J, Varekova R, Lastovicka O. Muscular and neuromuscular control following soccer-specific exercise in male youth: changes in injury risk mechanisms. Scand J Med Sci Sports. 2017;27(9):975982. PubMed doi:10.1111/sms.12705

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Iacono AD, Martone D, Cular D, Milic M, Padulo J. Game-profile-based training in soccer: a new field approach. J Strength Cond Res. 2017;31(12):33333342. PubMed doi:10.1519/JSC.0000000000001768

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Oliver JL, De Ste Croix MB, Lloyd RS, Williams CA. Altered neuromuscular control of leg stiffness following soccer-specific exercise. Eur J Appl Physiol. 2014;114(11):22412249. PubMed doi:10.1007/s00421-014-2949-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Marrier B, Le Meur Y, Robineau J. Quantifying neuromuscular fatigue induced by an intense training session in rugby sevens. Int J Sports Physiol Perform. 2016;12(2):119.

    • Search Google Scholar
    • Export Citation
  • 8.

    Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol. 1992;72(5):16311648. PubMed doi:10.1152/jappl.1992.72.5.1631

  • 9.

    Buchheit M, Gray A, Morin JB. Assessing stride variables and vertical stiffness with GPS-embedded accelerometers: preliminary insights for the monitoring of neuromuscular fatigue on the field. J Sports Sci Med. 2015;14(4):698701. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Morin JB, Jeannin T, Chevallier B, Belli A. Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. Int J Sports Med. 2006;27(2):158165. PubMed doi:10.1055/s-2005-837569

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Girard O, Racinais S, Kelly L, Millet GP, Brocherie F. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players. Eur J Appl Physiol. 2011;111(10):25472555. PubMed doi:10.1007/s00421-011-1884-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Buchheit M, Cholley Y, Lambert P. Psychometric and physiological responses to a preseason competitive camp in the heat with a 6-hour time difference in elite soccer players. Int J Sports Physiol Perform. 2016;11(2):176181. PubMed doi:10.1123/ijspp.2015-0135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Winter EM, Maughan RJ. Requirements for ethics approvals. J Sports Sci. 2009;27(10):985. PubMed doi:10.1080/02640410903178344

  • 14.

    Gathercole R, Sporer B, Stellingwerff T, Sleivert G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int J Sports Physiol Perform. 2015;10(1):8492. PubMed doi:10.1123/ijspp.2013-0413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Barrett S, Midgley AW, Towlson C, Garrett A, Portas M, Lovell R. Within-match playerload patterns during a simulated soccer match: potential implications for unit positioning and fatigue management. Int J Sports Physiol Perform. 2016;11(1):135140. PubMed doi:10.1123/ijspp.2014-0582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed doi:10.2165/00007256-200030010-00001

  • 18.

    Weir JP. Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins WG. Analysis of reliability with a spreadsheet. Sportscience. 2012. http://www.sportsci.org/resource/stats/xrely.xls. Accessed January 12, 2017.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Buchheit M, Mendez-Villanueva A. Reliability and stability of anthropometric and performance measures in highly-trained young soccer players: effect of age and maturation. J Sports Sci. 2013;31(12):13321343. PubMed doi:10.1080/02640414.2013.781662

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Thorborg K, Petersen J, Magnusson SP, Hölmich P. Clinical assessment of hip strength using a hand-held dynamometer is reliable. Scand J Med Sci Sports. 2010;20(3):493501. PubMed doi:10.1111/j.1600-0838.2009.00958.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Haugen T, Buchheit M. Sprint running performance monitoring: methodological and practical considerations. Sports Med. 2016;46(5):641656. doi:10.1007/s40279-015-0446-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313338. PubMed doi:10.1007/s40279-013-0029-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Buchheit M, Allen A, Poon TK, Modonutti M, Gregson W, Di Salvo V. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies. J Sports Sci. 2014;32(20):18441857. PubMed doi:10.1080/02640414.2014.942687

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Buchheit M, Simpson BM. Player tracking technology: half-full or half-empty glass? Int J Sports Physiol Perform. 2016;12(suppl 2):123.

    • Search Google Scholar
    • Export Citation
  • 27.

    Cone JR, Berry NT, Goldfarb AH, et al. Effects of an individualized soccer match simulation on vertical stiffness and impedance. J Strength Cond Res. 2012;26(8):20272036. PubMed doi:10.1519/JSC.0b013e31823a4076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mayer N, Bosquet L, Plaine F, et al. Reproducibility of Physiological, Neuromuscular and Perceptual Responses to Small-Sided Games in Highly-Trained Young Soccer Players. Barcelona, Spain: European College of Sport Science; 2013.

    • Search Google Scholar
    • Export Citation
  • 29.

    De Ste Croix M, Hughes J, Lloyd RS, Oliver JL, Read P. Leg stiffness in female soccer players: inter-session reliability and the fatiguing effects of soccer-specific exercise. J Strength Cond Res. 2016;31(11):30523058. doi:10.1519/JSC.0000000000001715

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Seitz LB, Haff GG. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 2016;46(2):231240. PubMed doi:10.1007/s40279-015-0415-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Morin JB, Edouard P, Samozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43(9):16801688. PubMed doi:10.1249/MSS.0b013e318216ea37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Morin JB, Gimenez P, Edouard P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. PubMed doi:10.3389/fphys.2015.00404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41(8):673694. PubMed doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6576 2023 101
Full Text Views 225 40 4
PDF Downloads 206 51 6