Cryotherapy Reinvented: Application of Phase Change Material for Recovery in Elite Soccer

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To examine whether donning lower-body garments fitted with cooled phase change material (PCM) would enhance recovery after a soccer match. Methods: In a randomized, crossover design, 11 elite soccer players from the reserve squad of a team in the second-highest league in England wore PCM cooled to 15°C (PCMcold) or left at ambient temperature (PCMamb; sham control) for 3 h after a soccer match. To assess recovery, countermovement jump height, maximal isometric voluntary contraction (MIVC), muscle soreness, and the adapted Brief Assessment of Mood Questionnaire (BAM+) were measured before 12, 36, and 60 h after each match. A belief questionnaire was completed preintervention and postintervention to determine the perceived effectiveness of each garment. Results: Results are comparisons between the 2 conditions at each time point postmatch. MIVC at 36 h postmatch was greater with PCMcold versus PCMwarm (P = .01; ES = 1.59; 95% CI, 3.9–17.1%). MIVC also tended to be higher at 60 h postmatch (P = .05; ES = 0.85; 95% CI, −0.4% to 11.1%). Muscle soreness was 26.5% lower in PCMcold versus PCMwarm at 36 h (P = .02; ES = 1.7; 95% CI, −50.4 to −16.1 mm) and 24.3% lower at 60 h (P = .04; ES = 1.1; 95% CI, −26.9 to −0.874 mm). There were no between-conditions differences in postmatch countermovement jump height or BAM+ (P > .05). The belief questionnaire revealed that players felt the PCMcold was more effective than the PCMamb after the intervention (P = .004). Conclusions: PCM cooling garments provide a practical means of delivering prolonged postexercise cooling and thereby accelerate recovery in elite soccer players.

Clifford is with the School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom. Abbott is with the School of Sport and Service Management, University of Brighton, Brighton, United Kingdom, and American Express Elite Performance Centre, Brighton and Hove Albion F.C., Lancing, United Kingdom. Kwiecien and McHugh are with the Nicholas Inst of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY. Clifford, Kwiecien, Howatson, and McHugh are with the Dept of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom. Howatson is also with Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa.

McHugh (mchugh@nismat.org) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Nedelec MMcCall ACarling CLegall FBerthoin SDupont G. Recovery in soccer: part ii-recovery strategies. Sports Med. 2013;43(1):922. PubMed doi:10.1007/s40279-012-0002-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Andersson HRaastad TNilsson JPaulsen GGarthe IKadi F. Neuromuscular fatigue and recovery in elite female soccer: effects of active recovery. Med Sci Sports Exerc. 2008;40(2):372380. PubMed doi:10.1249/mss.0b013e31815b8497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ascensao ALeite MRebelo ANMagalhäes SMagalhäes J. Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci. 2011;29(3):217225. PubMed doi:10.1080/02640414.2010.526132

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dupont GNedelec MMcCall AMcCormack DBerthoin SWisløff U. Effect of 2 soccer matches in a week on physical performance and injury rate. Am J Sports Med. 2010;38(9):17521758. PubMed doi:10.1177/0363546510361236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Nedelec MMcCall ACarling CLegall FBerthoin SDupont G. Recovery in soccer: part I—post-match fatigue and time course of recovery. Sports Med. 2012;42(12):9971015. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mohr MDraganidis DChatzinikolaou Aet al. Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. Eur J Appl Physiol. 2016;116(1):179193. PubMed doi:10.1007/s00421-015-3245-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hyldahl RDHubal MJ. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve. 2014;49(2):155170. PubMed doi:10.1002/mus.24077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Chazaud B. Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol. 2016;94(2):140145. PubMed doi:10.1038/icb.2015.97

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Urso ML. Anti-inflammatory interventions and skeletal muscle injury: benefit or detriment? J Appl Physiol. 2013;115(6):920928. PubMed doi:10.1152/japplphysiol.00036.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Howatson GLeeder Kvan Someren K. The BASES expert statement on athletic recovery strategies. Sport Exerc Sci. 2016:48. http://www.bases.org.uk/The-BASES-Expert-Statement-on-Athletic-Recovery-Strategies. Accessed March 5 2017.

    • Search Google Scholar
    • Export Citation
  • 11.

    Bongers CCHopman MTEijsvogels TM. Cooling interventions for athletes: an overview of effectiveness, physiological mechanisms, and practical considerations. Temperature. 2017;4(1):6078. doi:10.1080/23328940.2016.1277003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Toumi HBest TM. The inflammatory response: friend or enemy for muscle injury? Br J Sports Med. 2003;37(4):284286. PubMed doi:10.1136/bjsm.37.4.284

  • 13.

    Leeder JGissane Cvan Someren KGregson WHowatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233240. PubMed doi:10.1136/bjsports-2011-090061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Schaser KDDisch ACStover JFLauffer ABail HJMittlmeier T. Prolonged superficial local cryotherapy attenuates microcirculatory impairment, regional inflammation, and muscle necrosis after closed soft tissue injury in rats. Am J Sports Med. 2007;35(1):93102. PubMed doi:10.1177/0363546506294569

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Peake JMRoberts LAFigueiredo VCet al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J Physiol. 2017;595(3):695711. PubMed doi:10.1113/JP272881

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Reinertsen REFaerevik HHolbo Ket al. Optimizing the performance of phase-change materials in personal protective clothing systems. Int J Occup Saf Ergon. 2008;14(1):4353. PubMed doi:10.1080/10803548.2008.11076746

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kwiecien SYMcHugh MPHowatson G. The efficacy of cooling with phase change material for the treatment of exercise-induced muscle damage: pilot study. J Sports Sci. 2017;36(4):407413. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hill JHowatson Gvan Someren Ket al. The effects of compression garment pressure on recovery from strenuous exercise. Int J Sports Physiol Perform. 2017;12(8):10781084. PubMed doi:10.1123/ijspp.2016-0380

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Howatson GMcHugh MPHill JAet al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20(6):843852. PubMed doi:10.1111/j.1600-0838.2009.01005.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Clifford TBell OWest DJHowatson GStevenson EJ. The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Eur J Appl Physiol. 2016;116(2):353362. PubMed doi:10.1007/s00421-015-3290-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Broatch JRPetersen ABishop DJ. Postexercise cold water immersion benefits are not greater than the placebo effect. Med Sci Sports Exerc. 2014;46(11):21392147. doi:10.1249/MSS.0000000000000348

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Shearer DASparkes WNortheast JCunningham DJCook CJKilduff LP. Measuring recovery: an adapted brief assessment of mood (BAM+) compared to biochemical and power output alterations. J Sci Med Sport. 2017;20(5):512517. PubMed doi:10.1016/j.jsams.2016.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Thomas KDent JHowatson GGoodall S. Etiology and recovery of neuromuscular fatigue after simulated soccer match play. Med Sci Sports Exerc. 2017;49(5):955964. PubMed doi:10.1249/MSS.0000000000001196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Warren GLIngalls CPLowe DAArmstrong RB. What mechanisms contribute to the strength loss that occurs during and in the recovery from skeletal muscle injury? J Orthop Sport Phys. 2002;32(2):5864. doi:10.2519/jospt.2002.32.2.58

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Paulsen GCrameri RBenestad HBet al. Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc. 2010;42(1):7585. PubMed doi:10.1249/MSS.0b013e3181ac7adb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nikolaidis MGJamurtas AZPaschalis VFatouros IGKoutedakis YKouretas D. The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: magnitude and time-course considerations. Sports Med. 2008;38(7):579606. PubMed doi:10.2165/00007256-200838070-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pizza FXPeterson JMBaas JHKoh TJ. Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol. 2005;562(pt 3):899913. PubMed doi:10.1113/jphysiol.2004.073965

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Warren GLCall JAFarthing AKBaadom-Piaro B. Minimal evidence for a secondary loss of strength after an acute muscle injury: a systematic review and meta-analysis. Sports Med. 2017;47(1):4159. PubMed doi:10.1007/s40279-016-0528-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Saw AEMain LCGastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281291. PubMed doi:10.1136/bjsports-2015-094758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Silva YASantos BHAndrade PRet al. Skin temperature changes after exercise and cold water immersion. Sport Sci Health. 2017;13(1):195202. doi:10.1007/s11332-017-0353-x

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 203 203 92
Full Text Views 9 9 1
PDF Downloads 2 2 1
Altmetric Badge
PubMed
Google Scholar
Cited By