Vertical and Horizontal Jump Capacity in International Cerebral Palsy Football Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To evaluate the reliability and validity of vertical and horizontal jump tests in football players with cerebral palsy (FPCP) and to analyze the jump performance differences between current International Federation for Cerebral Palsy Football functional classes (ie, FT5–FT8). Methods: A total of 132 international parafootballers (25.8 [6.7] y; 70.0 [9.1] kg; 175.7 [7.3] cm; 22.8 [2.8] kg·m−2; and 10.7 [7.5] y training experience) participated in the study. The participants were classified according to the International Federation for Cerebral Palsy Football classification rules, and a group of 39 players without cerebral palsy was included in the study as a control group. Football players’ vertical and horizontal jump performance was assessed. Results: All the tests showed good to excellent relative intrasession reliability scores, both in FPCP and in the control group (intraclass correlation = .78–.97, SEM < 10.5%). Significant between-groups differences (P < .001) were obtained in the countermovement jump, standing broad jump, 4 bounds for distance, and triple hop for distance dominant leg and nondominant leg. The control group performed higher/farther jumps with regard to all the FPCP classes, obtaining significant differences and moderate to large effect sizes (ESs) (.85 < ES < 5.54, P < .01). Players in FT8 class (less severe impairments) had significantly higher scores in all the jump tests than players in the lower classes (ES = moderate to large, P < .01). Conclusions: The vertical and horizontal jump tests performed in this study could be applied to the classification procedures and protocols for FPCP.

Reina and Sabido are with Sports Research Center, Miguel Hernández University, Elche, Spain, as was Campayo-Piernas at the time of the study. Iturricastillo and Yanci are with Faculty of Education and Sport, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.

Reina (rreina@goumh.es) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Schuth GCarr GBarnes CCarling CBradley PS. Positional interchanges influence the physical and technical match performance variables of elite soccer players. J Sports Sci. 2015;34(6):501508. PubMed doi:10.1080/02640414.2015.1127402

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Castagna CCastellini E. Vertical jump performance in Italian male and female national team soccer players. J Strength Cond Res. 2013;27(4):11561161. PubMed doi:10.1519/JSC.0b013e3182610999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Arcos ALYanci JMendiguchia JSalinero JJBrughelli MCastagna C. Short-term training effects of vertically and horizontally oriented exercises on neuromuscular performance in professional soccer players. Int J Sports Physiol Perform. 2014;9(3):480488. PubMed doi:10.1123/ijspp.2013-0063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pääsuke MEreline JGapeyeva H. Knee extension strength and vertical jumping performance in Nordic combined athletes. J Sports Med Phys Fitness. 2001;41(3):354361. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Yanci JArcos AMendiguchia JBrughelli M. Relationships between sprinting, agility, one- and two-leg vertical and horizontal. Kinesiology. 2014;46(2):194201.

    • Search Google Scholar
    • Export Citation
  • 6.

    Loturco IPereira LAKobal Ret al. Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. J Sports Sci. 2015;33(20):21822191. PubMed doi:10.1080/02640414.2015.1081394

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Reddihough DSCollins KJ. The epidemiology and causes of cerebral palsy. Aust J Physiother. 2013;49(1):712. PubMed doi:10.1016/S0004-9514(14)60183-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wiwanitkit V. Muscle size and strength in children with cerebral palsy. Disabil Rehabil. 2015;37(21):2022. PubMed doi:10.3109/09638288.2014.946155

  • 9.

    Damiano DLDodd KTaylor NF. Should we be testing and training muscle strength in cerebral palsy? Dev Med Child Neurol. 2002;44(1):6872. PubMed doi:10.1017/S0012162201001682

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    De Groot SDallmeijer AJBessems PJCLamberts MLVan Der Woude LHVJanssen TWJ. Comparison of muscle strength, sprint power and aerobic capacity in adults with and without cerebral palsy. J Rehabil Med. 2012;44(13):932938. PubMed doi:10.2340/16501977-1037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Yanci JCastagna CLos Arcos Aet al. Muscle strength and anaerobic performance in football players with cerebral palsy. Disabil Health J. 2016;9(2):313319. PubMed doi:10.1016/j.dhjo.2015.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Runciman PTucker RFerreira SAlbertus-Kajee YDerman W. Effects of induced volitional fatigue on sprint and jump performance in Paralympic athletes with cerebral palsy. Am J Phys Med Rehabil. 2016;95(4):277290. PubMed doi:10.1097/PHM.0000000000000372

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Stackhouse SKBinder-Macleod SALee SC. Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve. 2005;31(5):594601. PubMed doi:10.1002/mus.20302

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Moreau NGGannotti ME. Addressing muscle performance impairments in cerebral palsy: implications for upper extremity resistance training. J Hand Ther. 2015;28(2):91100. PubMed doi:10.1016/j.jht.2014.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Beckman EMConnick MJTweedy SM. How much does lower body strength impact Paralympic running performance? Eur J Sport Sci. 2016;16(6):669676. PubMed doi:10.1080/17461391.2015.1132775

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cámara JGrande IMejuto GLos-Arcos AYanci J. Jump landing characteristics in elite soccer players with cerebral palsy. Biol Sport. 2013;30(2):9195. doi:10.5604/20831862.1044223

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kloyiam SBreen SJakeman PConway JHutzler Y. Soccer-specific endurance and running economy in soccer players with cerebral palsy. Adapt Phys Activ Q. 2011;28(4):354367. PubMed doi:10.1123/apaq.28.4.354

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Reina RSarabia JMYanci JGarcía-Vaquero MPCampayo-Piernas M. Change of direction ability performance in cerebral palsy football players according to functional profiles. Front Physiol. 2016;6:18. doi:10.3389/fphys.2015.00409

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Mujika ISantisteban JImpellizzeri FMCastagna C. Fitness determinants of success in men’s and women’s football. J Sports Sci. 2009;27(2):107114. PubMed doi:10.1080/02640410802428071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Morriën FTaylor MJHettinga FJ. Biomechanics in Paralympics: implications for performance. Int J Sports Physiol Perform. 2017;12:578589. PubMed doi:10.1123/ijspp.2016-0199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Loturco ID’Angelo RAFernandes Vet al. Relationship between sprint ability and loaded/unloaded jump tests in elite sprinters. J Strength Cond Res. 2015;29:758764. PubMed doi:10.1519/JSC.0000000000000660

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Maulder PCronin J. Horizontal and vertical jump assessment: reliability, symmetry, discriminative and predictive ability. Phys Ther Sport. 2005;6:7482. doi:10.1016/j.ptsp.2005.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Beckman EMTweedy SM. Towards evidence-based classification in Paralympic athletics: evaluating the validity of activity limitation tests for use in classification of Paralympic running events. Br J Sports Med. 2009;43(13):10671072. PubMed doi:10.1136/bjsm.2009.061804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Munro AGHerrington LC. Between-session reliability of four hop tests and the agility T-test. J Strength Cond Res. 2011;25(5):14701477. PubMed doi:10.1519/JSC.0b013e3181d83335

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Portney LWatkins M. Foundations of Clinical Research: Applications to Practice. Upper Saddle River, NJ: Prentice Hall; 2008.

  • 26.

    Atkinson GNevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217238. PubMed doi:10.2165/00007256-199826040-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18:918920. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hori NNewton RUKawamori NMcGuigan MRKraemer WJNosaka K. Reliability of performance measurements derived from ground reaction force data during countermovement jump and the influence of sampling frequency. J Strength Cond Res. 2009;23(3):874882. PubMed doi:10.1519/JSC.0b013e3181a00ca2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cronin JBHing RDMcnair PJ. Reliability and validity of a linear position transducer for measuring jump performance. J Strength Cond Res. 2004;18(3):590593. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Rodríguez-Rosell DMora-Custodio RFranco-Márquez FYáñez-García JMGonzález-Badillo JJ. Traditional vs. sport-specific vertical jump tests: reliability, validity, and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players. J Strength Cond Res. 2017;31(1):196206. PubMed doi:10.1519/JSC.0000000000001476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Markovic GDizdar DJukic ICardinale M. Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res. 2004;18(3):551555. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Fernández-Santos JRRuiz JRCohen DDGonzález-Montesinos JLCastro-Piñero J. Reliability and validity of tests to assess lower-body muscular power in children. J Strength Cond Res. 2015;29(8):22772285. PubMed doi:10.1519/JSC.0000000000000864

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Meylan CMcMaster TCronin JMohammad NIRogers C. Single-leg lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J Strength Cond Res. 2009;23(4):11401147. PubMed doi:10.1519/JSC.0b013e318190f9c2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Dobbs CWGill NDSmart DJMcGuigan MR. Relationship between vertical and horizontal jump variables and muscular performance in athletes. J Strength Cond Res. 2015;29(3):661671. PubMed doi:10.1519/JSC.0000000000000694

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Morin JBGimenez PEdouard Pet al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. PubMed doi:10.3389/fphys.2015.00404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Damiano DLMartellotta TLSullivan DJGranata KPAbel MF. Muscle force production and functional performance in spastic cerebral palsy: relationship of cocontraction. Arch Phys Med Rehabil. 2000;81(7):895900. PubMed doi:10.1053/apmr.2000.5579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Sanger TDChen DDelgado MRGaebler-Spira DHallett MMink JW. Taskforce on childhood motor disorders: definition and classification of negative motor signs in childhood. Pediatrics. 2006;118:21592167. PubMed doi:10.1542/peds.2005-3016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Cans CDolk HPlatt MJet al. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev Med Child Neurol Suppl. 2007;49:3538. PubMed doi:10.1111/j.1469-8749.2007.tb12626.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Claudino JGCronin JMezⓔncio Bet al. The countermovement jump to monitor neuromuscular status: a meta-analysis. J Sci Med Sport. 2017;20(4):397402. PubMed doi:10.1016/j.jsams.2016.08.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 125 125 41
Full Text Views 6 6 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar
Cited By