Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To investigate differences in neuromuscular factors between elite and nonelite players and to establish which factors underpin direction-specific unilateral jump performance. Methods: Elite (n = 23; age, 18.1 [1.0] y; body mass index, 23.1 [1.8] kg·m−2) and nonelite (n = 20; age, 22.3 [2.7] y; body mass index, 23.8 [1.8] kg·m−2) soccer players performed 3 unilateral countermovement jumps (CMJs) on a force platform in the vertical, horizontal-forward, and medial directions. Knee extension isometric maximum voluntary contraction torque was assessed using isokinetic dynamometry. Vastus lateralis fascicle length, angle of pennation, quadriceps femoris muscle volume (Mvol), and physiological cross-sectional area (PCSA) were assessed using ultrasonography. Vastus lateralis activation was assessed using electromyography. Results: Elite soccer players presented greater knee extensor isometric maximum voluntary contraction torque (365.7 [66.6] vs 320.1 [62.6] N·m; P = .045), Mvol (2853 [508] vs 2429 [232] cm3; P = .001), and PCSA (227 [42] vs 193 [25] cm2; P = .003) than nonelite. In both cohorts, unilateral vertical and unilateral medial CMJ performance correlated with Mvol and PCSA (r ≥ .310, P ≤ .043). In elite soccer players, unilateral vertical and unilateral medial CMJ performance correlated with upward phase vastus lateralis activation and angle of pennation (r ≥ .478, P ≤ .028). Unilateral horizontal-forward CMJ peak vertical power did not correlate with any measure of muscle size or activation but correlated inversely with angle of pennation (r = −.413, P = .037). Conclusions: While larger and stronger quadriceps differentiated elite from nonelite players, relationships between neuromuscular factors and unilateral jump performance were shown to be direction-specific. These findings support a notion that improving direction-specific muscular power in soccer requires improving a distinct neuromuscular profile.

Murtagh, Nulty, Vanrenterghem, O’Boyle, Drust, and Erskine are with the Research Inst for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom. Murtagh, O’Boyle, and Drust are with the Liverpool Football Club, Liverpool, United Kingdom. Vanrenterghem is with the Dept of Rehabilitation Sciences, KU Leuven–University of Leuven, Leuven, Belgium. Morgans is with the Football Association of Wales, Cardiff, Wales, United Kingdom. Erskine is with the Inst of Sport, Exercise & Health, University College London, London, United Kingdom.

Murtagh (Conall.Murtagh@liverpoolfc.com) is corresponding author.
  • 1.

    Varley MC, Aughey RJ. Acceleration profiles in elite Australian soccer. Int J Sports Med. 2013;34(1):34–39. PubMed

  • 2.

    Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625–631. PubMed doi:10.1080/02640414.2012.665940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Murtagh CF, Vanrenterghem J, O’Boyle A, Morgans R, Drust B, Erskine RM. Unilateral jumps in different directions: a novel assessment of soccer-associated power? J Sci Med Sport. 2017;20(11):1018–1023. PubMed doi:10.1016/j.jsams.2017.03.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power. Sports Med. 2011;41(1):17–38. PubMed doi:10.2165/11537690-000000000-00000

  • 5.

    Erskine RM, Jones DA, Maganaris CN, Degens H. In vivo specific tension of the human quadriceps femoris muscle. Eur J Appl Physiol. 2009;106(6):827–838. PubMed doi:10.1007/s00421-009-1085-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Strong relationships exist between muscle volume, joint power and whole-body external mechanical power in adults and children. Exp Physiol. 2009;94(6):731–738. doi:10.1113/expphysiol.2008.045062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Temfemo A, Hugues J, Chardon K, Mandengue S-H, Ahmaidi S. Relationship between vertical jumping performance and anthropometric characteristics during growth in boys and girls. Eur J Pediatr. 2009;168(4):457–464. PubMed doi:10.1007/s00431-008-0771-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Meylan CM, Nosaka K, Green J, Cronin JB. Temporal and kinetic analysis of unilateral jumping in the vertical, horizontal, and lateral directions. J Sports Sci. 2010;28(5):545–554. PubMed doi:10.1080/02640411003628048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Degens H, Erskine RM, Morse CI. Disproportionate changes in skeletal muscle strength and size with resistance training and ageing. Mech Ageing Dev. 2009;9(3):123–129.

    • Search Google Scholar
    • Export Citation
  • 10.

    Alexander RM, Vernon A. The dimensions of knee and ankle muscles and the forces they exert. J Hum Movement Stud. 1975;1(1):115–123.

  • 11.

    Erskine RM, Fletcher G, Folland JP. The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol. 2014;114(6):1239–1249. PubMed doi:10.1007/s00421-014-2855-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Spector SA, Gardiner PF, Zernicke RF, Roy RR, Edgerton V. Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. J Neurophysiol. 1980;44(5):951–960. PubMed doi:10.1152/jn.1980.44.5.951

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Nagano A, Komura T, Fukashiro S. Optimal coordination of maximal-effort horizontal and vertical jump motions–a computer simulation study. Biomed Eng Online. 2007;6(1):20–29. doi:10.1186/1475-925X-6-20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Fukashiro S, Besier TF, Barrett R, Cochrane J, Nagano A, Lloyd DG. Direction control in standing horizontal and vertical jumps. J Sport Health Sci. 2005;3(special_issue_2005):272–279. doi:10.5432/ijshs.3.272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Dowling JJ, Vamos L. Identification of kinetic and temporal factors related to vertical jump performance. J Appl Biomech. 1993;9:95–110. doi:10.1123/jab.9.2.95

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Grimshaw P, Fowler N, Lees A, Burden A. BIOS Instant Notes in Sport and Exercise Biomechanics. New York, NY: Garland Science; 2004.

  • 17.

    Meylan CM, Cronin JB, Oliver JL, Hughes MG, McMaster D. The reliability of jump kinematics and kinetics in children of different maturity status. J Strength Cond Res. 2012;26(4):1015–1026. PubMed doi:10.1519/JSC.0b013e31822dcec7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jaric S, Mirkov D, Markovic G. Normalizing physical performance tests for body size: aprosal for standardization. J Strength Cond Res. 2005;19(2):467–474. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Morse CI, Degens H, Jones DA. The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol. 2007;100(3):267–274. PubMed doi:10.1007/s00421-007-0429-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol. 2004;91(1):116–118. PubMed doi:10.1007/s00421-003-0961-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tillin NA, Pain M, Folland JP. Identification of contraction onset during explosive contractions. Response to Thompson et al. “Consistency of rapid muscle force characteristics: influence of muscle contraction onset detection methodology” [J Electromyogr Kinesiol. 2012;22(6):893–900]. J Electromyogr Kinesiol. 2013;23(4):991–994. PubMed doi:10.1016/j.jelekin.2013.04.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Cometti G, Maffiuletti NA, Pousson M, Chatard JC, Maffulli N. Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int J Sports Med. 2001;22(1):45–51. PubMed doi:10.1055/s-2001-11331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jakobsen MD, Sundstrup E, Randers MB, et al. The effect of strength training, recreational soccer and running exercise on stretch–shortening cycle muscle performance during countermovement jumping. Hum Mov Sci. 2012;31(4):970–986. PubMed doi:10.1016/j.humov.2011.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Erskine R, Williams A, Jones D, Stewart C, Degens H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scan J Med Sci Sports. 2014;24(4):642–648. doi:10.1111/sms.12055

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Santiago C, González-Freire M, Serratosa L, et al. ACTN3 genotype in professional soccer players. Br J Sports Med. 2008;42(1):71–73. PubMed doi:10.1136/bjsm.2007.039172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Withers R, Maricic Z, Wasilewski S, Kelly L. Match analysis of Australian professional soccer players. J Hum Mov Stud. 1982;8:159–176.

    • Search Google Scholar
    • Export Citation
  • 27.

    Enright K, Morton J, Iga J, Drust B. The effect of concurrent training organisation in youth elite soccer players. Eur J Appl Physiol. 2015;115(11):2367–2381. PubMed doi:10.1007/s00421-015-3218-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Aagaard P, Andersen JL, Dyhre-Poulsen P, et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol. 2001;534(2):613–623. doi:10.1111/j.1469-7793.2001.t01-1-00613.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    De Ruiter CJ, Van Leeuwen D, Heijblom A, Bobbert MF, De Haan A. Fast unilateral isometric knee extension torque development and bilateral jump height. Med Sci Sports Exerc. 2006;38(10):1843–1852. PubMed doi:10.1249/01.mss.0000227644.14102.50

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    McBride JM, McCaulley GO, Cormie P. Influence of preactivity and eccentric muscle activity on concentric performance during vertical jumping. J Strength Cond Res. 2008;22(3):750–757. PubMed doi:10.1519/JSC.0b013e31816a83ef

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 160 160 29
Full Text Views 28 28 7
PDF Downloads 12 12 3