The Elevated Track in Pole Vault: An Advantage During Run-Up?

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Background: Approach speed is a major determinant of pole-vault performance. Athletic jump events such as long jump, triple jump, and pole vault can utilize an elevated track for the runway. Feedback from athletes indicates a benefit of using an elevated track on their results. However, there is no evidence that elevated tracks increase athletes’ performance. Purpose: To investigate the potential advantage of using an elevated track during elite pole-vault competitions on run-up speed parameters. Methods: Performance and run-up criteria (speed, stride rate, contact, and aerial time) were measured from 20 high-level male pole-vaulters during official competitions on either a regular or an elevated track. Parameters comparisons were made between both conditions, and run-up parameters were confronted to speed modification on the elevated track. Results: Statistical analyses indicated that for the elevated track, there was a small improvement in final speed (1.1%), stride rate (1.1%), and takeoff distance (3.1%) and a small reduction in aerial time (−1.9%). The study highlighted different individual responses depending on athletes’ capabilities. The authors noted that speed improvement was largely correlated with stride-rate improvement (r = .61) and contact-time reduction (r = −.51) for slower athletes. Conclusions: Elevated tracks can increase final approach speed in pole vault and positively influence performance. Interindividual responses were observed in these findings.

Cassirame is with the Culture Sport Health Society (EA 4660), EPSI, University of Franche-Comté, and the Dept Santé et Sports, Equipe Culture - Sport - Santé - Société (C3S), Sports University of Bourgogne Franche-Comté, Besançon, France. Cassirame and Sanchez are with Matsport, Saint Ismier, France. Morin is with the Laboratory of Human Motricity, Education, Sport and Health (EA6312), University of Nice Sophia Antipolis, Nice, France.

Cassirame (johancassirame@free.fr) is corresponding author.
  • 1.

    McMahon TA, Greene PR. Fast running tracks. Sci Am. 1978;239(6):148–163. PubMed ID: 734437 doi:10.1038/scientificamerican1278-148

  • 2.

    McMahon TA, Greene PR. The influence of track compliance on running. J Biomech. 1979;12(12):893–904. PubMed ID: 528547 doi:10.1016/0021-9290(79)90057-5

  • 3.

    Ferris DP, Farley CT. Interaction of leg stiffness and surface stiffness during human hopping. J Appl Physiol. 1997;82(1):15–22. PubMed ID: 9029193 doi:10.1152/jappl.1997.82.1.15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ferris DP, Louie M, Farley CT. Running in the real world: adjusting leg stiffness for different surfaces. Proc Biol Sci. 1998;265(1400):989–994. PubMed ID: 9675909 doi:10.1098/rspb.1998.0388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Stafilidis S, Arampatzis A. Track compliance does not affect sprinting performance. J Sports Sci. 2007;25(13):1479–1490. PubMed ID: 17852678 doi:10.1080/02640410601150462

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bosco C, Saggini R, Viru A. The influence of different floor stiffness on mechanical efficiency of leg extensor muscle. Ergonomics. 1997;40(6):670–679. PubMed ID: 9174418 doi:10.1080/001401397187964

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Arampatzis A, Brüggemann GP, Klapsing GM. Leg stiffness and mechanical energetic processes during jumping on a sprung surface. Med Sci Sports Exerc. 2001;33(6):923–931. PubMed ID: 11404657 doi:10.1097/00005768-200106000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    International Association of Athletics Federations. Competition Rules 2016–2017. Monaco: Author; 2015

  • 9.

    Arampatzis A, Schade F, Brüggemann GP. Interaction between the pole and the human body and its effect on the pole vaulting performance. ISBS-Conf Proc Arch. 2002;1(1):298–301.

    • Search Google Scholar
    • Export Citation
  • 10.

    Decker A, Bird M. Predicting potential jump height in the pole vault from four variables. ISBS-Conf Proc Arch. 2008;1(1):250–252.

  • 11.

    Frère J, L’hermette M, Slawinski J, Tourny-Chollet C. Mechanics of pole vaulting: a review. Sports Biomech. 2010;9(2):123–138. doi:10.1080/14763141.2010.492430

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Linthorne NP, Weetman AHG. Effects of run-up velocity on performance, kinematics, and energy exchanges in the pole vault. J Sports Sci Med. 2012;11(2):245–254. PubMed ID: 24149197

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    McGinnis PM. Evolution of the relationship between performance and approach run velocity in the women’s pole vault. ISBS-Conf Proc Arch. 2008;1(1):531–534.

    • Search Google Scholar
    • Export Citation
  • 14.

    Cassirame J, Sanchez H, Morin JB. Elevated track in pole vault, what advantage for run-up determinants of performance? ISBS-Conf Proc Arch. 2016;33(1):820–823.

    • Search Google Scholar
    • Export Citation
  • 15.

    Ferris DP, Liang K, Farley CT. Runners adjust leg stiffness for their first step on a new running surface. J Biomech. 1999;32(8):787–794. PubMed ID: 10433420 doi:10.1016/S0021-9290(99)00078-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Christensen B, Zebas C. A comparison of practice and competition approach velocities and the position of the top handhold at the pole plant in pole vaulters. ISBS-Conf Proc Arch. 2000;1(1).

    • Search Google Scholar
    • Export Citation
  • 17.

    Glatthorn JF, Gouge S, Nussbaumer S, Stauffacher S, Impellizzeri FM, Maffiuletti NA. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J Strength Cond Res. 2011;25(2):556–560. doi:10.1519/JSC.0b013e3181ccb18d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lee MM, Song CH, Lee KJ, Jung SW, Shin DC, Shin SH. Concurrent validity and test–retest reliability of the OPTOGait photoelectric cell system for the assessment of spatio-temporal parameters of the gait of young adults. J Phys Ther Sci. 2014;26(1):81–85. PubMed ID: 24567681 doi:10.1589/jpts.26.81

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Morin JB, Dalleau G, Kyröläinen H, Jeannin T, Belli A. A simple method for measuring stiffness during running. J Appl Biomech. 2005;21(2):167–180. PubMed ID: 16082017 doi:10.1123/jab.21.2.167

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Chapman AE, Caldwell GE. Kinetic limitations of maximal sprinting speed. J Biomech. 1983;16(1):79–83. PubMed ID: 6833312 doi:10.1016/0021-9290(83)90048-9

  • 22.

    Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. A review. Sports Med. 1992;13(6):376–392. doi:10.2165/00007256-199213060-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Miller RH, Umberger BR, Caldwell GE. Limitations to maximum sprinting speed imposed by muscle mechanical properties. J Biomech. 2012;45(6):1092–1097. PubMed ID: 22035638 doi:10.1016/j.jbiomech.2011.04.040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89(5):1991–1999. PubMed ID: 11053354 doi:10.1152/jappl.2000.89.5.1991

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25(5):583–594. PubMed ID: 25640466 doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Weyand PG, Sandell RF, Prime DNL, Bundle MW. The biological limits to running speed are imposed from the ground up. J Appl Physiol. 2010;108(4):950–961. PubMed ID: 20093666 doi:10.1152/japplphysiol.00947.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Chelly SM, Denis C. Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc. 2001;33(2):326–333. PubMed ID: 11224825 doi:10.1097/00005768-200102000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Frère J, Chollet D, Tourny-Chollet C. Assessment of the influence of pole carriage on sprint kinematics: a case study of novice athletes. Int J Sports Sci Eng. 2009;3(1):3–10.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 119 119 29
Full Text Views 2 2 1
PDF Downloads 1 1 0