Computer-Aided Stroke-by-Stroke Visualization of Actual and Target Power Allows for Continuously Increasing Ramp Tests on Wind-Braked Rowing Ergometers

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Ramp tests are continuously increasing exercise tests used for the determination of maximal oxygen uptake (V˙O2max), which is identifiable by a plateau in oxygen uptake despite increasing mechanical power output (LOAD). On wind-braked rowing ergometers (RowErg), it is hardly feasible to ensure a continuous increase in LOAD until test termination, as neither resistance nor stroke frequency is externally adjustable but depends on the rower. To enable ramp tests on RowErg, the authors produced visual stroke-by-stroke feedback showing target and actual LOAD to the rower. The software supports automatic test termination (TERMauto) if LOAD ceases to increase. The authors aimed to evaluate linearity of the LOAD increment and calculate the difference between TERMauto and test duration at subjective exhaustion. Materials: Twenty-eight highly trained male rowers performed a ramp test until subjective exhaustion on RowErg, targeting an increment of 35 W·min−1. LOAD was measured as work per time via external force and position sensors and visualized on a computer screen. TERMauto was deactivated, but all data were logged. Test duration at subjective exhaustion was subsequently compared with virtual test duration at TERMauto calculated from the log files. Results: Regression between time and LOAD was y = 167 + 34.6 W (r = .99). Individual correlations ranged from .97 to 1.0. TERMauto caused 12- to 35-s-shorter test durations than subjective exhaustion in 4 rowers, leading to an underestimation in V˙O2max not higher than 1.2% or 3.7%. Conclusion: This setup allows one to perform ramp tests on RowErg with continuously increasing LOAD until TERMauto. In particular cases V˙O2max might be slightly underestimated at TERMauto.

The authors are with the Div of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany.

Treff (gunnar.treff@uni-ulm.de) is corresponding author.

Supplementary Materials

    • Supplemental Materials (PDF 324 KB)
  • 1.

    Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol. 1983;55(5):15581564. PubMed ID: 6643191 doi:10.1152/jappl.1983.55.5.1558

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012.

    • Search Google Scholar
    • Export Citation
  • 3.

    Steinacker JM, Marx TR, Marx U, Lormes W. Oxygen consumption and metabolic strain in rowing ergometer exercise. Eur J Appl Physiol Occup Physiol. 1986;55(3):240247. PubMed ID: 3732251 doi:10.1007/BF02343794

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Treff G, Schmidt W, Wachsmuth N, Völzke C, Steinacker JM. Total haemoglobin mass, maximal and submaximal power in elite rowers. Int J Sports Med. 2013;35(7):571574. PubMed ID: 24234012 doi:10.1055/s-0033-1358476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Voliantis S, Secher NH. Rowing, the ultimate challenge to the human body implications for physiological variables. Clin Physiol Funct Imaging. 2009;29(4):241244. doi:10.1111/j.1475-097X.2009.00867.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Vogelsang TW, Yoshiga CC, Højgaard M, et al. . The plasma atrial natriuretic peptide response to arm and leg exercise in humans: effect of posture. Exp Physiol. 2006;91(4):765771. PubMed ID: 16675499 doi:10.1113/expphysiol.2006.033357

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Yoshiga CC, Higuchi M. Heart rate is lower during ergometer rowing than during treadmill running. Eur J Appl Physiol. 2002;87(2):97100. PubMed ID: 12070617 doi:10.1007/s00421-002-0599-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Steinacker JM, Both M, Whipp BJ. Pulmonary mechanics and entrainment of respiration and stroke rate during rowing. Int J Sports Med. 1993;14:1519. PubMed ID: 8262700 doi:10.1055/s-2007-1021217

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Ingham SA, Pringle JS, Hardman SL, Fudge BW, Richmond VL. Comparison of step-wise and ramp-wise incremental rowing exercise tests and 2000-m rowing ergometer performance. Int J Sports Physiol Perform. 2013;8(2):123129. PubMed ID: 22868448 doi:10.1123/ijspp.8.2.123

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Boyas S, Nordez A, Cornu C, Guével A. Power responses of a rowing ergometer: mechanical sensors vs Concept2 measurement system. Int J Sports Med. 2006;27(10):830833. PubMed ID: 16612738 doi:10.1055/s-2006-923774

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Taylor HL, Buskirk E, Henschel A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol. 1955;8(1):7380. PubMed ID: 13242493 doi:10.1152/jappl.1955.8.1.73

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 2007;37(12):10191028. PubMed ID: 18027991 doi:10.2165/00007256-200737120-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet. 1986;327(8476):307310. doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Smith TB, Hopkins WG. Measures of rowing performance. Sports Med. 2012;42(4):343358. PubMed ID: 22401296 doi:10.2165/11597230-000000000-00000

  • 15.

    Smith RM, Spinks WL. Discriminant analysis of biomechanical differences between novice, good and elite rowers. J Sports Sci. 1995;13(5):377385. PubMed ID: 8558624 doi:10.1080/02640419508732253

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Measurements during integrative cardiopulmonary exercise testing. In: Baca A, Wessner B, Diketmüller R, et al, eds. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. Vol 206, 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012.

    • Search Google Scholar
    • Export Citation
  • 17.

    Winkert K, Pieper L, Steinacker JM, Treff G. 21st Annual Congress of the European College of Sport Science. Vienna, Austria: AUT; 2016.

  • 18.

    Poole DC, Wilkerson DP, Jones AM. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol. 2008;102(4):403410. PubMed ID: 17968581 doi:10.1007/s00421-007-0596-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 749 561 26
Full Text Views 6 3 0
PDF Downloads 8 6 0