Effect of Intensified Endurance Training on Pacing and Performance in 4000-m Cycling Time Trials

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Studies examining pacing strategies during 4000-m cycling time trials (TTs) typically ensure that participants are not prefatigued; however, competitive cyclists often undertake TTs when already fatigued. This study aimed to determine how TT pacing strategies and sprint characteristics of cyclists change during an intensified training period (mesocycle). Thirteen cyclists regularly competing in A- and B-grade cycling races and consistently training (>10 h/wk for 4 [1] y) completed a 6-wk training mesocycle. Participants undertook individually prescribed training, using training stress scores (TrainingPeaks, Boulder, CO), partitioned into a baseline week, a build week, 2 loading weeks (designed to elicit an overreached state), and 2 recovery weeks. Laboratory-based tests (15-s sprint and TT) and Recovery-Stress Questionnaire (RESTQ-52) responses were repeatedly undertaken over the mesocycle. TT power output increased during recovery compared with baseline and loading weeks (P = .001) with >6-W increases in mean power output (MPO) detected for 400-m sections (10% bins) from 1200 to 4000 m in recovery weeks. Decreases in peak heart rate (P < .001) during loading weeks and postexercise blood lactate (P = .005) during loading week 2 and recovery week 1 were detected. Compared with baseline, 15-s sprint MPO declined during loading and recovery weeks (P < .001). An interaction was observed between RESTQ-52 total stress score with a 15-s sprint (P = .003) and with a TT MPO (P = .04), indicating that participants who experienced greater stress during loading weeks exhibited reduced performance. To conclude, intensified endurance training diminished sprint performance but improved 4000-m TT performance, with a subtle change in MPO evident over the last 70% of TTs.

Wallett, Woods, Versey, Welvaert, and Thompson are with the University of Canberra Research Inst Sport and Exercise, Canberra, Australia. Wallett, Woods, Versey, Garvican-Lewis, and Welvaert are with the Dept of Physiology, Australian Inst of Sport, Canberra, Australia. Garvican-Lewis is with the Mary Mackillop Inst for Health Research, Australian Catholic University, Melbourne, Australia.

Wallett (alice.wallett@canberra.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Thompson KG. Pacing: Individual Strategies for Optimal Performance. Lower Mitcham, SA: Human Kinetics; 2014.

  • 2.

    Abbiss CRLaursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239252. PubMed ID: 18278984 doi:10.2165/00007256-200838030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    de Koning JJBobbert MFFoster C. Determination of optimal pacing strategy in track cycling with an energy flow model. J Sci Med Sport. 1999;2(3):266277. PubMed ID: 10668763 doi:10.1016/S1440-2440(99)80178-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Foster Cde Koning JJBischel Set al. Pacing strategies for endurance performance. In: MujikaI ed. Endurance Training—Science and Practice. Vitoria-Gasteiz, Spain: Iñigo Mujika S.L.U; 2012.

    • Search Google Scholar
    • Export Citation
  • 5.

    Hettinga FJDe Koning JJBroersen FTVan Geffen PFoster C. Pacing strategy and the occurrence of fatigue in 4000-m cycling time trials. Med Sci Sports Exerc. 2006;38(8):14841491. PubMed ID: 16888463 doi:10.1249/01.mss.0000228956.75344.91

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Stone MRThomas KWilkinson MJones AMSt Clair Gibson AThompson KG. Effects of deception on exercise performance: implications for determinants of fatigue in humans. Med Sci Sports Exerc. 2012;44(3):534541. PubMed ID: 21886012 doi:10.1249/MSS.0b013e318232cf77

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Shei RJThompson KChapman RRaglin JMickleborough T. Using deception to establish a reproducible improvement in 4-km cycling time trial performance. Int J Sports Med. 2016;37(5):341346. PubMed ID: 26855435 doi:10.1055/s-0035-1565139

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Martin K.Staiano WMenaspà Pet al. Superior inhibitory control and resistance to mental fatigue in professional road cyclists. PLoS ONE. 2016;11(7):0159907. PubMed ID: 27441380 doi:10.1371/journal.pone.0159907

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Mauger ARJones AMWilliams CA. The effect of non-contingent and accurate performance feedback on pacing and time trial performance in 4-km track cycling. Br J Sports Med. 2011;45(3):225229. PubMed ID: 19858112 doi:10.1136/bjsm.2009.062844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Amann MDempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161173. PubMed ID: 17962334 doi:10.1113/jphysiol.2007.141838

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    de Morree HMMarcora SM. Effects of isolated locomotor muscle fatigue on pacing and time trial performance. Eur J Appl Physiol. 2013;113(9):23712380. PubMed ID: 23756830 doi:10.1007/s00421-013-2673-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Skorski SHammes DSchwindling Set al. Effects of training-induced fatigue on pacing patterns in 40-km cycling time trials. Med Sci Sports Exerc. 2015;47(3):593600. PubMed ID: 25003772 doi:10.1249/MSS.0000000000000439

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Halson SLBridge MWMeeusen Ret al. Time course of performance changes and fatigue markers during intensified training in trained cyclists. J Appl Physiol (1985). 2002;93(3):947956. doi:10.1152/japplphysiol.01164.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hausswirth CLouis JAubry ABonnet GDuffield RLe Meur Y. Evidence of disturbed sleep and increased illness in overreached endurance athletes. Med Sci Sports Exerc. 2014;46(5):10361045. PubMed ID: 24091995 doi:10.1249/MSS.0000000000000177

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Killer SSvendsen ISJeukendrup AEGleeson M. Evidence of disturbed sleep and mood state in well-trained athletes during short-term intensified training with and without a high carbohydrate nutritional intervention. J Sports Sci. 2017;35(14):14021410. PubMed ID: 26406911 doi:10.1080/02640414.2015.1085589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Halson SLBridge MWMeeusen Ret al. Time course of performance changes and fatigue markers during intensified training in trained cyclists. J Appl Physiol. 2002;93(3):947956. PubMed ID: 12183490 doi:10.1152/japplphysiol.01164.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139147. doi:10.1007/s40279-014-0253-z

  • 18.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 19.

    Hardy CRejeski WJ. Not what, but how one feels: the measurement of affect during exercise. J Sport Exerc Psychol. 1989;11(3):304317. doi:10.1123/jsep.11.3.304

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Garvican LAPottgiesser TMartin DTSchumacher YOBarras MGore CJ. The contribution of haemoglobin mass to increases in cycling performance induced by simulated LHTL. Eur J Appl Physiol. 2011;111(6):10891101. PubMed ID: 21113616 doi:10.1007/s00421-010-1732-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kuipers HVerstappen FTKeizer HAGeurten Pvan Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197201. PubMed ID: 4044103 doi:10.1055/s-2008-1025839

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Woods GFDay LWithers RTIlsley AHMaxwell BF. The dynamic calibration of cycle ergometers. Int J Sports Med. 1994;15(4):168171. PubMed ID: 8063463 doi:10.1055/s-2007-1021041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kellmann M. The Recovery Stress Questionnaires: User Manual. Champaign, IL: Human Kinetics; 2001.

  • 24.

    Stone MRThomas KWilkinson MSt Clair Gibson AThompson KG. Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. Eur J Appl Physiol. 2011;111(8):18071813. PubMed ID: 21222130 doi:10.1007/s00421-010-1818-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Le Meur YHausswirth CNatta FCouturier ABignet FVidal PP. A multidisciplinary approach to overreaching detection in endurance trained athletes. J Appl Physiol. 2013;114(3):411420. PubMed ID: 23195630 doi:10.1152/japplphysiol.01254.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52(5):416420. PubMed ID: 8641377 doi:10.1007/BF01919309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Thiel CFoster CBanzer WDe Koning J. Pacing in Olympic track races: competitive tactics versus best performance strategy. J Sports Sci. 2012;30(11):11071115. PubMed ID: 22738897 doi:10.1080/02640414.2012.701759

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Thomas KGoodall SStone MHowatson GSt Clair Gibson AAnsley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc. 2015;47(3):537546. PubMed ID: 25051388 doi:10.1249/MSS.0000000000000448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Stoter IK. Pacing strategy, muscle fatigue, and technique in 1500-m speed-skating and cycling time trials. Int J Sports Physiol Perform. 2016;11(3):337343. PubMed ID: 26263372 doi:10.1123/ijspp.2014-0603

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    St Clair Gibson ALambert MLNoakes TD. Neural control of force output during maximal and submaximal exercise. Sports Med. 2001;31(9):637650. PubMed ID: 11508520 doi:10.2165/00007256-200131090-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Corbett JBarwood MJOuzounoglou AThelwell RDicks M. Influence of competition on performance and pacing during cycling exercise. Med Sci Sports Exerc. 2012;44(3):509515. PubMed ID: 21900846 doi:10.1249/MSS.0b013e31823378b1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Skorski SFaude OCaviezel SMeyer T. Reproducibility of pacing profiles in elite swimmers. Int J Sports Physiol Perform. 2014;9(2):217225. PubMed ID: 23689199 doi:10.1123/ijspp.2012-0258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 56 56 14
Full Text Views 1 1 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar