Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To examine the reliability of peak velocity (PV), mean propulsive velocity (MPV), and mean velocity (MV) in the development of load–velocity profiles (LVP) in the full-depth free-weight back squat performed with maximal concentric effort. Methods: Eighteen resistance-trained men performed a baseline 1-repetition maximum (1-RM) back-squat trial and 3 subsequent 1-RM trials used for reliability analyses, with 48-h intervals between trials. 1-RM trials comprised lifts from 6 relative loads including 20%, 40%, 60%, 80%, 90%, and 100% 1-RM. Individualized LVPs for PV, MPV, or MV were derived from loads that were highly reliable based on the following criteria: intraclass correlation coefficient (ICC) >.70, coefficient of variation (CV) ≤10%, and Cohen d effect size (ES) <0.60. Results: PV was highly reliable at all 6 loads. MPV and MV were highly reliable at 20%, 40%, 60%, 80%, and 90% but not 100% 1-RM (MPV: ICC = .66, CV = 18.0%, ES = 0.10, SEM = 0.04 m·s−1; MV: ICC = .55, CV = 19.4%, ES = 0.08, SEM = 0.04 m·s−1). When considering the reliable ranges, almost perfect correlations were observed for LVPs derived from PV20–100% (r = .91–.93), MPV20–90% (r = .92–.94), and MV20–90% (r = .94–.95). Furthermore, the LVPs were not significantly different (P > .05) between trials or movement velocities or between linear regression versus 2nd-order polynomial fits. Conclusions: PV20–100%, MPV20–90%, and MV20–90% are reliable and can be utilized to develop LVPs using linear regression. Conceptually, LVPs can be used to monitor changes in movement velocity and employed as a method for adjusting sessional training loads according to daily readiness.

Banyard, Nosaka, and Haff are with the Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia. Banyard is also with the West Australian Football Commission, Perth, WA, Australia. Vernon is with the School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia.

Banyard (hbanyard@wafc.com.au) is corresponding author.
  • 1.

    Haff GG, Haff EE. Essentials of Periodization. Champaign, IL: Human Kinetics; 2012.

  • 2.

    Bompa T, Haff G. Periodization: Theory and Methodology of Training. Champaign, IL: Human Kinetics; 2009.

  • 3.

    Padulo J, Mignogna P, Mignardi S, Tonni F, D’Ottavio S. Effect of different pushing speeds on bench press. Int J Sports Med. 2012;33:376380. PubMed ID: 22318559 doi:10.1055/s-0031-1299702

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Banyard H, Nosaka K, Haff GG. Reliability and validity of the load-velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31:18971904. PubMed ID: 27669192 doi:10.1519/JSC.0000000000001657

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bosquet L, Porta-Benache J, Blais J. Validity of a commercial linear encoder to estimate bench press 1 RM from the force-velocity relationship. J Sports Sci Med. 2010;9:459463. PubMed ID: 24149641

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gonzalez-Badillo JJ, Sanchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31:347352. PubMed ID: 20180176 doi:10.1055/s-0030-1248333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jidovtseff B, Harris NK, Crielaard JM, Cronin JB. Using the load-velocity relationship for 1RM prediction. J Strength Cond Res. 2011;25:267270. PubMed ID: 19966589 doi:10.1519/JSC.0b013e3181b62c5f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sanchez-Medina L, Gonzalez-Badillo JJ, Perez CE, Pallares JG. Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int J Sports Med. 2014;35:209216. PubMed ID: 23900903 doi:10.1055/s-0033-1351252

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sanchez-Medina L, Gonzalez-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43:17251734. PubMed ID: 21311352 doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Conceição F, Fernandes J, Lewis M, Gonzaléz-Badillo JJ, Jimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci. 2015;34:10091106. PubMed ID: 26395837 doi:10.1080/02640414.2015.1090010

    • Search Google Scholar
    • Export Citation
  • 11.

    Muñoz-López M, Marchante D, Cano-Ruiz MA, Chicharro JL, Balsalobre-Fernández C. Load, force and power-velocity relationships in the prone pull-up exercise. Int J Sports Physiol Perform. 2017;12:12491255. PubMed ID: 28253041 doi:10.1123/ijspp.2016-0657

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hautier C, Linossier M, Belli A, Lacour J, Arsac L. Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition. Eur J Appl Physiol Occup Physiol. 1996;74:114118. PubMed ID: 8891509 doi:10.1007/BF00376503

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Larsson L, Moss R. Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol. 1993;472:595614. PubMed ID: 8145163 doi:10.1113/jphysiol.1993.sp019964

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cotterman M, Darby L, Skelly W. Comparison of muscle force production using the Smith machine and free weights for bench press and squat exercises. J Strength Cond Res. 2005;19:169175. PubMed ID: 15705030 doi:10.1519/14433.1

    • Search Google Scholar
    • Export Citation
  • 15.

    Bobbert MF, Gerritsen KG, Litjens MC, Van Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28:14021412. PubMed ID: 8933491 doi:10.1097/00005768-199611000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Stone ME, Plisk S, Collins D. Training principles: evaluation of modes and 48 methods of resistance training—a coaching perspective. Sports Biomech. 2002;1:79103. PubMed ID: 14658137 doi:10.1080/14763140208522788

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Matuszak ME, Fry AC, Weiss LW, Ireland TR, McKnight MM. Effect of rest interval length on repeated 1 repetition maximum back squats. J Strength Cond Res. 2003;17:634637. PubMed ID: 14636099

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Banyard H, Nosaka K, Sato K, Haff GG. Validity of various methods for determining velocity, force and power in the back squat. Int J Sports Physiol Perform. 2017;12:11701176. PubMed ID: 28182500 doi:10.1123/ijspp.2016-0627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Tufano J, Conlon J, Nimphius S, et al. Cluster sets permit greater mechanical stress without decreasing relative velocity. Int J Sports Physiol Perform. 2017;12:463469. PubMed ID: 27617387 doi:10.1123/ijspp.2015-0738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Tufano J, Conlon J, Nimphius S, et al. Cluster sets maintain velocity and power during high-volume back squats. Int J Sports Physiol Perform. 2016;11:885892. PubMed ID: 26791936 doi:10.1123/ijspp.2015-0602

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cormie P, Deane R, McBride JM. Methodological concerns for determining power output in the jump squat. J Strength Cond Res. 2007;21:424430. PubMed ID: 17530961 doi:10.1519/R-19605.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31:123129. PubMed ID: 20222005 doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. Hillsdale, NJ: Erlbaum; 1988.

  • 24.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26:217238. PubMed ID: 9820922 doi:10.2165/00007256-199826040-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1:5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

  • 26.

    Beckerman H, Roebuck ME, Lankhorst GL, Becher JG, Bezemer PD, Verbeek ALM. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res. 2001;10:571578. PubMed ID: 11822790 doi:10.1023/A:1013138911638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Roebroeck ME, Harlaar J, Lankhorst G. The application of generalizability theory to reliability assessments: an illustration using isometric force measurements. Phys Ther. 1993;73:386395. PubMed ID: 8497513 doi:10.1093/ptj/73.6.386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Meng XL, Rosenthal R, Rubin DB. Comparing correlated correlation coefficients. Psychol Bull. 1992;111:172175. doi:10.1037/0033-2909.111.1.172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Zourdos MC, Klemp A, Dolan C, et al. Novel resistance training-specific RPE scale measuring repetitions in reserve. J Strength Cond Res. 2016;30:267275. PubMed ID: 26049792 doi:10.1519/JSC.0000000000001049

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Reilly T, Morris T, Whyte G. The specificity of training prescription and physiological assessment: a review. J Sports Sci. 2009;27:575589. PubMed ID: 19340630 doi:10.1080/02640410902729741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2016;7:677. PubMed ID: 28119624 doi:10.3389/fphys.2016.00677

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42:15821598. PubMed ID: 20139780 doi:10.1249/MSS.0b013e3181d2013a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Haff GG, Ruben RP, Lider J, Twine C, Cormie P. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. J Strength Cond Res. 2015;29:386395. PubMed ID: 25259470 doi:10.1519/JSC.0000000000000705

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 545 533 43
Full Text Views 38 32 2
PDF Downloads 20 20 2