Oxygen Uptake and Muscle Deoxygenation Kinetics During Skating: Comparison Between Slide-Board and Treadmill Skating

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To compare the oxygen-uptake (V˙O2) kinetics during skating on a treadmill and skating on a slide board and to discuss potential mechanisms that might control the V˙O2 kinetics responses during skating. Methods: Breath-by-breath pulmonary V˙O2 and near-infrared spectroscopy–derived muscle deoxygenated hemoglobin and myoglobin ([HHbMb]) were monitored continuously in 12 well-trained, young, long-track speed skaters. On-transient V˙O2 and [HHbMb] responses to skating on a treadmill and skating on a slide board at 80% of the estimated gas exchange threshold were fitted as monoexponential function. The signals were time-aligned, and the individual [HHbMb]-to-V˙O2 ratio was calculated as the average value from 20 to 120 s after exercise starts. Results: The time constants for the adjustment of phase II V˙O2V˙O2) and [HHbMb] (τ [HHbMb]) were low and similar between slide board and treadmill skating (18.1 [3.4] vs 18.9 [3.6] for τ V˙O2 and 12.6 [4.0] vs 12.4 [4.0] s for τ [HHbMb]). The [HHbMb]:V˙O2 ratio was not different from 1.0 (P > .05) in both conditions. Conclusions: The fast V˙O2 kinetics during skating suggest that chronic adaptation to skating might overcome any possible restriction in leg blood flow during low-intensity exercise. The V˙O2 ratio values also suggest a good matching of O2 delivery to O2 utilization in trained speed skaters. The similar τ V˙O2 and τ [HHbMb] values between slide board and treadmill further reinforce the validity of using a slide board for skating testing and training purposes.

The authors are with Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada. Piucco and Diefenthaeler are also with the Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil.

Murias (jmmurias@ucalgary.ca) is corresponding author.
  • 1.

    Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2(2):933–996. PubMed ID: 23798293 doi:10.1002/cphy.c100072

  • 2.

    Murias JM, Spencer MD, Paterson DH. The critical role of O2 provision in the dynamic adjustment of oxidative phosphorylation. Exerc Sport Sci Rev. 2014;42(1):4–11. PubMed ID: 24188979 doi:10.1249/JES.0000000000000005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Temesi J, Mattioni Maturana F, Peyrard A, et al. The relationship between oxygen uptake kinetics and neuromuscular fatigue in high-intensity cycling exercise. Eur J Appl Physiol. 2017;117(5):969–978. PubMed ID: 28357580 doi:10.1007/s00421-017-3585-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Foster C, De Koning JJ, Hettinga F, et al. Pattern of energy expenditure during simulated competition. Med Sci Sports Exerc. 2003;35(5):826–831. PubMed ID: 12750593 doi:10.1249/01.MSS.0000065001.17658.68

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Foster C, Rundell KW, Snyder AC, et al. Evidence for restricted muscle blood flow during speed skating. Med Sci Sports Exerc. 1999;31(10):1433–1440. PubMed ID: 10527316 doi:10.1097/00005768-199910000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rundell KW. Compromised oxygen uptake in speed skaters during treadmill in-line skating. Med Sci Sports Exerc. 1996;28(1):120–127. PubMed ID: 8775364 doi:10.1097/00005768-199601000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Krieg A, Meyer T, Clas S, et al. Characteristics of inline speedskating—incremental tests and effect of drafting. Int J Sports Med. 2006;27(10):818–823. PubMed ID: 16586325 doi:10.1055/s-2005-872967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kandou TW, Houtman IL, vd Bol E, et al. Comparison of physiology and biomechanics of speed skating with cycling and with skateboard exercise. Can J Sport Sci. 1987;12(1):31–36. PubMed ID: 3594316

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Piucco T, O’Connell J, Stefanyshyn D, et al. Incremental testing design on slide board for speed skaters: comparison between two different protocols. J Strength Cond Res. 2016;30(11):3116–3121. PubMed ID: 26937770 doi:10.1519/JSC.0000000000001392

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Piucco T, Diefenthaeler F, Soares R, et al. Validation of a maximal incremental skating test performed on a slide board: comparison with treadmill skating. Int J Sports Physiol Perform. 2017;12:1363–1369. PubMed ID: 28338378 doi:10.1123/ijspp.2016-0613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Murias JM, Spencer MD, Kowalchuk JM, et al. Muscle deoxygenation to VO2 relationship differs in young subjects with varying τVO2. Eur J Appl Physiol. 2011;111(12):3107–3118. PubMed ID: 21461928 doi:10.1007/s00421-011-1937-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–2027. PubMed ID: 3087938 doi:10.1152/jappl.1986.60.6.2020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Spencer MD, Murias JM, Lamb HP, et al. Are the parameters of VO2, heart rate and muscle deoxygenation kinetics affected by serial moderate-intensity exercise transitions in a single day? Eur J Appl Physiol. 2011;111(4):591–600. PubMed ID: 20931221 doi:10.1007/s00421-010-1653-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Crum EM, O’Connor WJ, Van Loo L, et al. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur J Sport Sci. 2017;17(8):1037–1043. PubMed ID: 28557670 doi:10.1080/17461391.2017.1330899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    duManoir GR, DeLorey DS, Kowalchuk JM, et al. Kinetics of VO2 limb blood flow and regional muscle deoxygenation in young adults during moderate intensity, knee-extension exercise. Eur J Appl Physiol. 2010;108(3):607–617. PubMed ID: 19882164 doi:10.1007/s00421-009-1263-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McLay KM, Murias JM, Paterson DH. Similar pattern of change in V˙O2 kinetics, vascular function, and tissue oxygen provision following an endurance training stimulus in older and young adults. Am J Physiol Regul Integr Comp Physiol. 2017;312(4):467–476. PubMed ID: 28122720 doi:10.1152/ajpregu.00399.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Cleuziou C, Perrey S, Borrani F, et al. Dynamic responses of O2 uptake at the onset and end of exercise in trained subjects. Can J Appl Physiol. 2003;28(4):630–641. PubMed ID: 12959096 doi:10.1139/h03-048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kilding AE, Winter EM, Fysh M. A comparison of pulmonary oxygen uptake kinetics in middle- and long-distance runners. Int J Sports Med. 2006;27(5):419–426. PubMed ID: 16729386 doi:10.1055/s-2005-865778

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Murias JM, Spencer MD, Delorey DS, et al. Speeding of VO2 kinetics during moderate-intensity exercise subsequent to heavy-intensity exercise is associated with improved local O2 distribution. J Appl Physiol. 2011;111(5):1410–1415. PubMed ID: 21836042 doi:10.1152/japplphysiol.00607.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Park S, Kim JK, Choi HM, et al. Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. Eur J Appl Physiol. 2010;109(4):591–600. PubMed ID: 20544348 doi:10.1007/s00421-010-1377-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports. 2011;21(6):e231–e241. PubMed ID: 21385216 doi:10.1111/j.1600-0838.2010.01260.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lindholm ME, Rundqvist H. Skeletal muscle hypoxia-inducible factor-1 and exercise. Exp Physiol. 2016;101(1):28–32. PubMed ID: 26391197 doi:10.1113/EP085318

  • 23.

    Burgomaster KA, Moore DR, Schofield LM, et al. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med Sci Sports Exerc. 2003;35(7):1203–1208. PubMed ID: 12840643 doi:10.1249/01.MSS.0000074458.71025.71

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Esbjörnsson M, Jansson E, Sundberg CJ, et al. Muscle fibre types and enzyme activities after training with local leg ischaemia in man. Acta Physiol Scand. 1993;148(3):233–242. PubMed ID: 8213179 doi:10.1111/j.1748-1716.1993.tb09554.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wüst RC, van der Laarse WJ, Rossiter HB. On–off asymmetries in oxygen consumption kinetics of single Xenopus laevis skeletal muscle fibres suggest higher-order control. J Physiol. 2013;591(3):731–744. PubMed ID: 23165768 doi:10.1113/jphysiol.2012.241992

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    de Koning JJ, Foster C, Lampen J, et al. Experimental evaluation of the power balance model of speed skating. J Appl Physiol. 2005;98(1):227–233. PubMed ID: 15591304 doi:10.1152/japplphysiol.01095.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hettinga FJ, De Koning JJ, Schmidt LJ, et al. Optimal pacing strategy: from theoretical modelling to reality in 1500-m speed skating. Br J Sports Med. 2011;45(1):30–35. PubMed ID: 19850574 doi:10.1136/bjsm.2009.064774

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Snyder AC, O’Hagan KP, Clifford PS, et al. Exercise responses to in-line skating: comparisons to running and cycling. Int J Sports Med. 1993;14(1):38–42. PubMed ID: 8440544 doi:10.1055/s-2007-1021143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hoffman MD, Jones GM, Bota B, et al. In-line skating: physiological responses and comparison with roller skiing. Int J Sports Med. 1992;13(2):137–144. PubMed ID: 1555903 doi:10.1055/s-2007-1021245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rundell KW, Pripstein LP. Physiological responses of speed skaters to treadmill low walking and cycle ergometry. Int J Sports Med. 1995;16(5):304–308. PubMed ID: 7558527 doi:10.1055/s-2007-973010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Piucco T, Bini R, Sakaguchi M, et al. Motor unit firing frequency of lower limb muscles during an incremental slide board skating test. Sports Biomech. 2017;16:540–551. PubMed ID: 28632052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    van der Zwaard S, Jaspers RT, Blokland IJ, et al. Oxygenation threshold derived from near-infrared spectroscopy: reliability and its relationship with the first ventilatory threshold. PLoS ONE. 2016; 11(9):e0162914. PubMed ID: 27631607 doi:10.1371/journal.pone.0162914

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hesford CM, Laing SJ, Cardinale M, et al. Asymmetry of quadriceps muscle oxygenation during elite short-track speed skating. Med Sci Sports Exerc. 2012;44(3):501–508. PubMed ID: 21900848 doi:10.1249/MSS.0b013e31822f8942

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 146 146 30
Full Text Views 1 1 0
PDF Downloads 1 1 0