Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To analyze the energetic profile of the Basketball Exercise Simulation Test (BEST). Methods: Ten male elite junior basketball players (age 15.5 [0.6] y, height 180 [9] cm, and body mass 66.1 [11.2] kg) performed a modified BEST (20 circuits consisting of jumping, sprinting, jogging, shuffling, and short breaks) simulating professional basketball game play. Circuit time, sprint time, sprint decrement, oxygen uptake (VO2), heart rate, and blood lactate concentration (blc) were obtained. Metabolic energy and metabolic power above rest (Wtot and Ptot), as well as energy share in terms of aerobic (Waer), glycolytic (Wblc), and high-energy phosphates (WPCr), were calculated from VO2 during exercise, net lactate production, and the fast component of postexercise VO2 kinetics, respectively. Results: Waer, Wblc, and WPCr reflect 89% (2%), 5% (1%), and 6% (1%) of total energy needed, respectively. Assuming an aerobic replenishment of PCr energy stores during short breaks, the adjusted energy share yielded Waer 66% (4%), Wblc 5% (1%), and WPCr 29% (1%). Waer and WPCr were negatively correlated (−0.72 and −0.59) with sprint time, which was not the case for Wblc. Conclusions: Consistent with general findings on energy system interaction during repeated high-intensity exercise bouts, the intermittent profile of the BEST relies primarily on aerobic energy combined with repetitive supplementation by anaerobic utilization of high-energy phosphates.

Latzel, Hoos, Stier, Kaufmann, Fresz, and Reim are with the Faculty of Human Sciences, Sports Center, Julius Maximilians University of Würzburg, Würzburg, Germany. Beneke is with the Dept of Medicine, Training & Health, Inst of Sports Science, Philipps-University Marburg, Marburg, Germany.

Latzel (richard.latzel@uni-wuerzburg.de) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Ben Abdelkrim NEl Fazaa SEl Ati J. Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br J Sports Med. 2007;41(2):6975. Discussion 75. PubMed ID: 17138630 doi:10.1136/bjsm.2006.032318

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ben Abdelkrim NCastagna CJabri IBattikh TEl Fazaa SEl Ati J. Activity profile and physiological requirements of junior elite basketball players in relation to aerobic-anaerobic fitness. J Strength Cond Res. 2010;24(9):23302342. doi:10.1519/JSC.0b013e3181e381c1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Castagna CImpellizzeri FMChaouachi ABen Abdelkrim NManzi V. Physiological responses to ball-drills in regional level male basketball players. J Sports Sci. 2011;29(12):13291336. PubMed ID: 21777056 doi:10.1080/02640414.2011.597418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Drinkwater EJPyne DBMcKenna MJ. Design and interpretation of anthropometric and fitness testing of basketball players. Sports Med. 2008;38(7):565578. doi:10.2165/00007256-200838070-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Stone NMKilding AE. Aerobic conditioning for team sport athletes. Sports Med. 2009;39(8):615642. doi:10.2165/00007256-200939080-00002

  • 6.

    Foran BPound R. Complete Conditioning for Basketball. Champaign, IL: Human Kinetics; 2007.

  • 7.

    Scanlan ATDascombe BJReaburn PRJ. The construct and longitudinal validity of the basketball exercise simulation test. J Strength Cond Res. 2012;26(2):523530. doi:10.1519/JSC.0b013e318220dfc0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Scanlan ATDascombe BJReaburn PR. Development of the basketball exercise simulation test: a match-specific basketball fitness test. J Human Sport Exerc. 2014;9(3):700712. doi:10.14198/jhse.2014.93.03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Delextrat ACohen D. Physiological testing of basketball players: toward a standard evaluation of anaerobic fitness. J Strength Cond Res. 2008;22(4):10661072. doi:10.1519/JSC.0b013e3181739d9b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Montgomery PGPyne DBMinahan CL. The physical and physiological demands of basketball training and competition. Int J Sports Physiol Perform. 2010;5(1):7586. doi:10.1123/ijspp.5.1.75

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Narazaki KBerg KStergiou NChen B. Physiological demands of competitive basketball. Scand J Med Sci Sports. 2009;19(3):425432. PubMed ID: 18397196 doi:10.1111/j.1600-0838.2008.00789.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ziv GLidor R. Physical attributes, physiological characteristics, on-court performances and nutritional strategies of female and male basketball players. Sports Med. 2009;39(7):547568. doi:10.2165/00007256-200939070-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Dupont GMcCall APrieur FMillet GPBerthoin S. Faster oxygen uptake kinetics during recovery is related to better repeated sprinting ability. Eur J Appl Physiol. 2010;110(3):627634. doi:10.1007/s00421-010-1494-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Beneke RBeyer TJachner CErasmus JHütler M. Energetics of karate kumite. Eur J Appl Physiol. 2004;92(4–5):518523. doi:10.1007/s00421-004-1073-x

  • 15.

    Campos FADBertuzzi RDourado ACSantos VGFFranchini E. Energy demands in taekwondo athletes during combat simulation. Eur J Appl Physiol. 2012;112(4):12211228. doi:10.1007/s00421-011-2071-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Conte DFavero TGNiederhausen MCapranica LTessitore A. Physiological and technical demands of no dribble game drill in young basketball players. J Strength Cond Res. 2015;29(12):33753379. PubMed ID: 26595130 doi:10.1519/JSC.0000000000000997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Conte DFavero TGNiederhausen MCapranica LTessitore A. Effect of different number of players and training regimes on physiological and technical demands of ball-drills in basketball. J Sports Sci. 2016;34(8):780786. PubMed ID: 26208533 doi:10.1080/02640414.2015.1069384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Beneke RPollmann CBleif ILeithäuser RMHütler M. How anaerobic is the Wingate Anaerobic Test for humans? Eur J Appl Physiol. 2002;87(4–5):388392. doi:10.1007/s00421-002-0622-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bertuzzi RMelegati JBueno Set al. GEDAE-LaB: a free software to calculate the energy system contributions during exercise. PLoS ONE. 2016;11(1):0145733. doi:10.1371/journal.pone.0145733

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Artioli GGBertuzzi RCRoschel HMendes SHLancha AHFranchini E. Determining the contribution of the energy systems during exercise. J Vis Exp. 2012;(61):e3413. doi:10.3791/3413

    • Search Google Scholar
    • Export Citation
  • 21.

    Davis PLeithäuser RMBeneke R. The energetics of semicontact 3 × 2-min amateur boxing. Int J Sports Physiol Perform. 2014;9(2):233239. doi:10.1123/ijspp.2013-0006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bangsbo JIaia FMKrustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):3751. doi:10.2165/00007256-200838010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Girard OMendez-Villanueva ABishop D. Repeated-sprint ability – part I: factors contributing to fatigue. Sports Med. 2011;41(8):673694. doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Di Prampero PCerretelli PPiiper J. Lactic acid formation in gastrocnemius muscle on the dog and its relation to O2 debt contraction. Resp Physiol. 1970;8(3):347353. doi:10.1016/0034-5687(70)90041-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725741. doi:10.2165/00007256-200131100-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Faul FErdfelder ELang ABuchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191. doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins WG. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sport Sci. 2006;10:4650.

  • 29.

    Ben Abdelkrim NChaouachi AChamari KChtara MCastagna C. Positional role and competitive-level differences in elite-level men’s basketball players. J Strength Cond Res. 2010;24(5):13461355. doi:10.1519/JSC.0b013e3181cf7510

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Rampinini ESassi AAzzalin Aet al. Physiological determinants of Yo-Yo intermittent recovery tests in male soccer players. Eur J Appl Physiol. 2010;108(2):401409. doi:10.1007/s00421-009-1221-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    McMahon SJenkins D. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med. 2002;32(12):761784. doi:10.2165/00007256-200232120-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Bogdanis GCNevill MEBoobis LHLakomy HK. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80(3):876884. doi:10.1152/jappl.1996.80.3.876

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Forbes SCPaganini ATSlade JMTowse TFMeyer RA. Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles. Am J Physiol Regul Integr Comp Physiol. 2009;296(1):R161170. PubMed ID: 18945946 doi:10.1152/ajpregu.90704.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 129 129 19
Full Text Views 1 1 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar