Salivary Biomarkers and Training Load During Training and Competition in Paralympic Swimmers

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Ciara Sinnott-O’Connor
Search for other papers by Ciara Sinnott-O’Connor in
Current site
Google Scholar
PubMed
Close
,
Thomas M. Comyns
Search for other papers by Thomas M. Comyns in
Current site
Google Scholar
PubMed
Close
,
Alan M. Nevill
Search for other papers by Alan M. Nevill in
Current site
Google Scholar
PubMed
Close
, and
Giles D. Warrington
Search for other papers by Giles D. Warrington in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Stress responses in athletes can be attributed to training and competition, where increased physiological and psychological stress may negatively affect performance and recovery. Purpose: To examine the relationship between training load (TL) and salivary biomarkers immunoglobulin A (IgA), alpha-amylase (AA), and cortisol across a 16-wk preparation phase and 10-d competition phase in Paralympic swimmers. Methods: Four Paralympic swimmers provided biweekly saliva samples during 3 training phases—(1) normal training, (2) intensified training, and (3) taper—as well as daily saliva samples in the 10-d Paralympic competition (2016 Paralympic Games). TL was measured using session rating of perceived exertion. Results: Multilevel analysis identified a significant increase in salivary immunoglobulin A (sIgA: 94.98 [27.69] μg·mL−1), salivary alpha-amylase (sAA: 45.78 [19.07] μg·mL−1), and salivary cortisol (7.92 [2.17] nM) during intensified training concurrent with a 38.3% increase in TL. During the taper phase, a 49.5% decrease in TL from the intensified training phase resulted in a decrease in sIgA, sAA, and salivary cortisol; however, all 3 remained higher than baseline levels. A further significant increase was observed during competition in sIgA (168.69 [24.19] μg·mL−1), sAA (35.86 [16.67] μg·mL−1), and salivary cortisol (10.49 [1.89] nM) despite a continued decrease (77.8%) in TL from the taper phase. Conclusions: Results demonstrate that performance in major competition such as Paralympic games, despite a noticeable reduction in TL, induces a stress response in athletes. Because of the elevated stress response observed, modifications to individual postrace recovery protocols may be required to enable athletes to maximize performance across all 10 d of competition.

The authors are with the University of Limerick, Limerick, Ireland. Sinnott-O’Connor is also with Paralympics Ireland and the Sport Ireland Inst, Dublin, Ireland. Nevill is also with the University of Wolverhampton, Wolverhampton, United Kingdom.

Sinnott-O’Connor (csoconnor@instituteofsport.ie) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138:32. doi:10.1038/138032a0

  • 2.

    Mujika I, Padilla S. Scientific bases for precompetition tapering strategies. Med Sci Sports Exerc. 2003;35:11821187. PubMed ID: 12840640 doi:10.1249/01.MSS.0000074448.73931.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44:139147. doi:10.1007/s40279-014-0253-z

  • 4.

    Gleeson M, Robson-Ansley P. Immune responses to intensified training and overreaching. In: Gleeson M, ed. Immune Function in Sports and Exercise. London, UK: Churchill Livingstone Elsevier; 2005:115138.

    • Search Google Scholar
    • Export Citation
  • 5.

    Smith DJ, Norris SR. Training load and monitoring an athlete’s tolerance for endurance training. In: Kellmann M, ed. Enhancing Recovery: Preventing Underperformance in Athletes. Champaign, IL: Human Kinetics; 2002:81101.

    • Search Google Scholar
    • Export Citation
  • 6.

    Foster C, Hector LL, Welsh R, Schrager M, Green MA, Snyder AC. Effects of specific versus cross-training on running performance. Eur J Appl Physiol Occup Physiol. 1995;70:367372. PubMed ID: 7649149 doi:10.1007/BF00865035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Borresen J, Lambert MI. A theoretical basis of monitoring fatigue: a practical approach for coaches. Int J Sports Sci Coach. 2006;1:353359. doi:10.1260/174795406779367666

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wallace LK, Slattery KM, Coutts AJ. The ecological validity and application of the session-RPE method for quantifying training loads in swimming. J Strength Cond Res. 2009;23:3338. PubMed ID: 19002069 doi:10.1519/JSC.0b013e3181874512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Papacosta E, Nassis GP. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J Sci Med Sport. 2011;14:424434. PubMed ID: 21474377 doi:10.1016/j.jsams.2011.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Neville V, Gleeson M, Folland JP. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc. 2008;40:12281236. PubMed ID: 18580401 doi:10.1249/MSS.0b013e31816be9c3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gleeson M, McDonald WA, Pyne DB, et al. Salivary IgA levels and infection risk in elite swimmers. Med Sci Sports Exerc. 1999;31:6773. PubMed ID: 9927012 doi:10.1097/00005768-199901000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Libicz S, Mercier B, Bigou N, Le Gallais D, Castex F. Salivary IgA response of triathletes participating in the French Iron Tour. Int J Sports Med. 2006;27:389394. PubMed ID: 16729381 doi:10.1055/s-2005-865747

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chennaoui M, Bougard C, Drogou C, et al. Stress biomarkers, mood states and sleep during a major competition: “success” and “failure” athlete’s profile of high-level swimmers. Front Physiol. 2016;7:94. PubMed ID: 27014092 doi:10.3389/fphys.2016.00094

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kivlighan KT, Granger DA. Salivary alpha-amylase response to competition: relation to gender, previous experience and attitudes. Psychoneuroendocrinology. 2006;31:703714. PubMed ID: 16624493 doi:10.1016/j.psyneuen.2006.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chatterton RT, Vogelsong KM, Lu YC, Ellman AB, Hudgens GA. Salivary α-amylase as a measure of endogenous adrenergic activity. Clin Physiol. 1996;16:433448. PubMed ID: 8842578 doi:10.1111/j.1475-097X.1996.tb00731.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    O’Connor PJ, Morgan WP, Raglin JS, Barksdale CM, Kalin NH. Mood state and salivary cortisol levels following overtraining in female swimmers. Psychoneuroendocrinology. 1989;14(4):303310. doi:10.1016/0306-4530(89)90032-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cunniffe B, Hore AJ, Whitcombe DM, Jones KP, Baker JS, Davies B. Time course of changes in immuneoendocrine markers following an international rugby game. Eur J Appl Physiol. 2010;108:113122. PubMed ID: 19756700 doi:10.1007/s00421-009-1200-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Dunbar J, Jenhanli A, Skelhorn S. Investigating the use of a point of care sIgA test in the sporting environment. Paper presented at: Proceedings of the 10th International Society of Exercise Immunology; July 11–13, 2011; Oxford, UK .

    • Search Google Scholar
    • Export Citation
  • 19.

    Kraft JA, Green JM, Thompson KR. Session rating of perceived exertion responses during resistance training bouts equated for total work but differing in work rate. J Strength Cond. 2014;28(2):540545. doi:10.1519/JSC.0b013e31829b569c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Borg GAV, Hassmen P, Langerstrom M. Perceived exertion in relation to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol. 1985;65:679685.

    • Search Google Scholar
    • Export Citation
  • 21.

    Rasbash J, Charlton C, Browne WJ, Healy M, Cameron B. MLwiN Version 2.1. Centre for Multilevel Modelling, University of Bristol; 2009.

  • 22.

    Edmonds R, Burkett B, Leicht A, McKean M. Effect of chronic training on heart rate variability, salivary IgA and salivary alpha-amylase in elite swimmers with a disability. PLoS ONE. 2015;10:0127749. PubMed ID: 26043224 doi:10.1371/journal.pone.0127749

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Gozansky WS, Lynn JS, Laudenslager ML, Kohrt WM. Salivary cortisol determined by enzyme immunoassay is preferable to serum total cortisol for assessment of dynamic hypothalamic-pituitary–adrenal axis activity. Clin Endocrinol. 2005;63:336341. doi:10.1111/j.1365-2265.2005.02349.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Nieman DC. Exercise effects on systemic immunity. Immunol Cell Biol. 2000;78:496501. PubMed ID: 11050532 doi:10.1111/j.1440-1711.2000.t01-5-.x

  • 25.

    Tharp GD. Basketball exercise and secretory immunoglobulin A. Eur J Appl Physiol Occup Physiol. 1991;63:312314. PubMed ID: 1761026 doi:10.1007/BF00233868

  • 26.

    Gleeson M, Walsh NP. The BASES expert statement on exercise, immunity, and infection. J Sports Sci. 2012;30:321324. PubMed ID: 22132765 doi:10.1080/02640414.2011.627371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Rohelder N, Nater UM. Determinants of salivary α-amylase in humans and methodological considerations. Psychoneuroendocrinology. 2009;34:469485. doi:10.1016/j.psyneuen.2008.12.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Diaz MM, Bocanegra OL, Teixeira RR, Soares S, Espindola FS. Salivary nitric oxide and alpha-amylase as indexes of training intensity and load. Int J Sports Med. 2013;34:813. PubMed ID: 22960992

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gomes RV, Moreira A, Lodo L, Nosaka K, Coutts AJ, Aoki MS. Monitoring training loads, stress, immune-endocrine responses and performance in tennis players. Biol Sport. 2013;30:173180. PubMed ID: 24744485 doi:10.5604/20831862.1059169

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Filaire E, Lac G, Pequignot JM. Biological, hormonal, and psychological parameters in professional soccer players throughout a competitive season. Percept Mot Skills. 2003;97:10611072. PubMed ID: 15002848 doi:10.2466/pms.2003.97.3f.1061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Moreira A, Arsaty F, Cury PR, et al. The impact of a 17-day training period for an international championship on mucosal immune parameters in top-level basketball players and staff members. Eur J Oral Sci. 2008;116:431437. PubMed ID: 18821985 doi:10.1111/j.1600-0722.2008.00558.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kellman M. Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scand J Med Sci Sports. 2010;20(suppl 2):95102. doi:10.1111/j.1600-0838.2010.01192.x

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3054 1203 62
Full Text Views 38 8 2
PDF Downloads 29 8 2