Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Context: In sprint events, the first 2 steps are used to accelerate the center of mass horizontally and vertically. Amputee athletes cannot actively generate energy with their running-specific prosthesis. It is likely that sprint acceleration mechanics, including step asymmetry, are altered compared with able-bodied athletes. Purpose: To investigate spatiotemporal and kinetic variables of amputee compared with able-bodied sprinters. Methods: Kinematic and kinetic data of the first and second stance were collected from 15 able-bodied and 7 amputee sprinters (2 unilateral transfemoral, 4 unilateral transtibial, and 1 bilateral transtibial) with a motion-capture system (250 Hz) and 2 force plates (1000 Hz). In addition, bilateral asymmetry was quantified and compared between groups. Results: Compared with able-bodied athletes, amputee athletes demonstrated significantly lower performance values for 5- and 10-m times. Step length, step velocity, and step frequency were decreased and contact times increased. Peak horizontal force and relative change of horizontal velocity were decreased in both stances. Peak vertical force and relative change of vertical velocity were lower for the amputee than the able-bodied group during the first stance but significantly higher during the second stance. During the first stance, able-bodied and amputee sprinters displayed a similar orientation of the ground-reaction-force vector, which became more vertically orientated in the amputee group during second stance. Amputee sprinters showed significantly greater asymmetry magnitudes for vertical force kinetics compared with able-bodietd athletes. Conclusion: A running-specific prosthesis does not replicate the function of the biological limb well in the early acceleration phase.

Strutzenberger and Schwameder are with the Dept of Sport Science & Kinesiology, University of Salzburg, Hallein, Austria. Strutzenberger, Brazil, von Lieres und Wilkau, Davies, and Irwin are with the Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom. von Lieres und Wilkau, Willwacher, Funken, Müller, Heinrich, and Potthast are with the Inst of Biomechanics, German Sport University, Cologne, Germany. Exell is with the Dept of Sport and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom. Heinrich is also with the University of Applied Science, Koblenz, Germany.

Strutzenberger (gerda.strutzenberger@sbg.ac.at) is corresponding author.
  • 1.

    Debaere S, Delecluse C, Aerenhouts D, Hagman F, Jonkers I. From block clearance to sprint running: characteristics underlying an effective transition. J Sports Sci. 2013;31(2):137149. PubMed ID: 22974278 doi:10.1080/02640414.2012.722225

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Debaere S, Delecluse C, Aerenhouts D, Hagman F, Jonkers I. Control of propulsion and body lift during the first two stances of sprint running: a simulation study. J Sports Sci. 2015;33(19):20162024. PubMed ID: 25798644 doi:10.1080/02640414.2015.1026375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Harland MJ, Steele JR. Biomechanics of the sprint start. Sports Med. 1997;23(1):1120. PubMed ID: 9017856 doi:10.2165/00007256-199723010-00002

  • 4.

    Salo AIT, Keränen T, Viitasalo JT. Force production in the first four steps of sprint running. Paper presented at: Proceedings of the 23rd Symposium of the International Society of Biomechanics in Sports. Beijing, China; August 22–27, 2005 . https://ojs.ub.uni-konstanz.de/cpa/article/view/766/689. Accessed June 18, 2018.

    • Export Citation
  • 5.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25(5):583594. PubMed ID: 25640466 doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Morin JB, Edouard P, Samozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43(9):16801688. PubMed ID: 21364480 doi:10.1249/MSS.0b013e318216ea37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Winter DA. Biomechanics and Motor Control of Human Movement. New York, NY: John Wiley & Sons, Inc; 2009.

  • 8.

    Cavagna GA, Komarek L, Mazzoleni S. The mechanics of sprint running. J Physiol. 1971;217(3):709721. PubMed ID: 5098087 doi:10.1113/jphysiol.1971.sp009595

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lai A, Schache AG, Brown NA, Pandy MG. Human ankle plantar flexor muscle-tendon mechanics and energetics during maximum acceleration sprinting. J R Soc Interface. 2016;13(121):20160391. PubMed ID: 27581481 doi:10.1098/rsif.2016.0391

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Brazil A, Exell T, Wilson C, Bezodis I, Willwacher S, Irwin G. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting. J Sports Sci. 2017;35(16):16291635. PubMed ID: 27598715 doi:10.1080/02640414.2016.1227465

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Willwacher S, Herrmann V, Heinrich K, et al. Sprint start kinetics of amputee and non-amputee sprinters. PLoS ONE. 2016;11(11):0166219. PubMed ID: 27846241 doi:10.1371/journal.pone.0166219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Bezodis NE, Salo AI, Trewartha G. Lower limb joint kinetics during the first stance phase in athletics sprinting: three elite athlete case studies. J Sports Sci. 2014;32(8):738746. PubMed ID: 24359568 doi:10.1080/02640414.2013.849000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Taboga P, Grabowski AM, di Prampero PE, Kram R. Optimal starting block configuration in sprint running; a comparison of biological and prosthetic legs. J Appl Biomech. 2014;30(3):381389. PubMed ID: 24345741 doi:10.1123/jab.2013-0113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Grabowski A, McGowan CP, McDermott WJ, Beale MT, Kram R, Herr H. Running-specific prostheses limit ground-force during sprinting. Biol Lett. 2010;6:201204. PubMed ID: 19889694 doi:10.1098/rsbl.2009.0729

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zifchock RA, Davis I, Higginson J, Royer T. The symmetry angle: a novel, robust method of quantifying asymmetry. Gait Posture. 2008;27(4):622627. PubMed ID: 17913499 doi:10.1016/j.gaitpost.2007.08.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Exell T, Irwin G, Gittoes M, Kerwin D. Strength and performance asymmetry during maximal velocity sprint running. Scand J Med Sci Sports. 2017;27(11):12731282.

  • 17.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 18.

    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):39213930. PubMed ID: 22422028 doi:10.1007/s00421-012-2379-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 223 203 14
Full Text Views 17 17 0
PDF Downloads 11 11 0