Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance During Repeated-Sprint Cycling

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Evidence supporting the use of lower-limb compression garments during repeated-sprint exercise (RSE) with short rest periods, where performance will rely heavily on aerobic metabolism, is lacking. Methods: A total of 20 recreationally active participants completed 2 cycling RSE sessions, with and without lower-limb compression tights. The RSE session consisted of 4 sets of 10 × 6-s maximal sprints on a wind-braked cycle ergometer, interspaced by 24 s of recovery between bouts and 2 min of recovery between sets. Muscle oxygen consumption (mV˙O2) of, and blood flow (mBF) to, the right vastus lateralis muscle was measured during exercise using near-infrared spectroscopy and venous/arterial occlusions of the right lower limb. Cycling performance, oxygen consumption (V˙O2), heart rate, and capillary blood samples (lactate, pH, bicarbonate, and base excess) were also measured/taken throughout the session. Results: Compared with control, peak power (40.7 [19.9] W; mean ± 95% confidence intervals) and mBF (0.101 [0.061] mL·min−1·100 g−1) were higher, and heart rate (2  [1] beats/min) was lower, when participants wore compression (P < .05). mV˙O2, V˙O2, blood lactate, and heart rate increased as a result of exercise (P < .05), with no differences between conditions. Similarly, blood pH, bicarbonate, and base excess decreased as a result of exercise (P < .05), with no difference between conditions. Conclusions: Wearing lower-limb compression tights during RSE with short intervals of rest improved cycling performance, vastus lateralis mBF, and heart rate. These results provide novel data to support the notion that lower-limb compression garments aid RSE performance, which may be related to local and/or central blood flow.

Broatch and Bishop are with the Inst for Health and Sport (IHES), Victoria University, Melbourne, Australia. Broatch and Halson are with the Dept of Physiology, Australia Inst of Sport, Belconnen, ACT, Australia. Bishop is also with the School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.

Broatch (james.broatch@vu.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Girard OMendez-Villanueva ABishop D. Repeated-sprint ability - part I: factors contributing to fatigue. Sports Med. 2011;41(8):673694. PubMed ID: 21780851 doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bishop DGirard OMendez-Villanueva A. Repeated-sprint ability - part II: recommendations for training. Sports Med. 2011;41(9):741756. PubMed ID: 21846163 doi:10.2165/11590560-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bishop DEdge JGoodman C. Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol. 2004;92(4–5):540547. PubMed ID: 15168128 doi:10.1007/s00421-004-1150-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Reilly T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J Sports Sci. 1997;15(3):257263. PubMed ID: 9232551 doi:10.1080/026404197367263

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Christmass MARichmond SECable NTArthur PGHartmann PE. Exercise intensity and metabolic response in singles tennis. J Sports Sci. 1998;16(8):739747. PubMed ID: 10189079 doi:10.1080/026404198366371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mendez-Villanueva AEdge JSuriano RHamer PBishop D. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS ONE. 2012;7(12):51977. PubMed ID: 23284836 doi:10.1371/journal.pone.0051977

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lopez-Segovia MPareja-Blanco FJiménez-Reyes PGonzález-Badillo JJ. Determinant factors of repeat sprint sequences in young soccer players. Int J Sports Med. 2015;36(2):130136. PubMed ID: 25259593

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rampinini ESassi AMorelli AMazzoni SFanchini MCoutts AJ. Repeated-sprint ability in professional and amateur soccer players. Appl Physiol Nutr Metab. 2009;34(6):10481054. PubMed ID: 20029513 doi:10.1139/H09-111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bogdanis GCNevill MEBoobis LHLakomy HKNevill AM. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol. 1995;482(pt 2):467480. doi:10.1113/jphysiol.1995.sp020533

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bogdanis GCNevill MEBoobis LHLakomy HK. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80(3):876884. doi:10.1152/jappl.1996.80.3.876

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gaitanos GCWilliams CBoobis LHBrooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993;75(2):712719. PubMed ID: 8226473 doi:10.1152/jappl.1993.75.2.712

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McGawley KBishop DJ. Oxygen uptake during repeated-sprint exercise. J Sci Med Sport. 2015;18(2):214218. PubMed ID: 24602687 doi:10.1016/j.jsams.2014.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Born DPSperlich BHolmberg HC. Bringing light into the dark: effects of compression clothing on performance and recovery. Int J Sports Physiol Perform. 2013;8(1):418. PubMed ID: 23302134 doi:10.1123/ijspp.8.1.4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Born DPHolmberg HCGoernert FSperlich B. A novel compression garment with adhesive silicone stripes improves repeated sprint performance–a multi-experimental approach on the underlying mechanisms. BMC Sports Sci Med Rehabil. 2014;6:21. PubMed ID: 24914412 doi:10.1186/2052-1847-6-21

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Dascombe BJHoare TKSear JAReaburn PRScanlan AT. The effects of wearing undersized lower-body compression garments on endurance running performance. Int J Sports Physiol Perform. 2011;6(2):160173. PubMed ID: 21725102 doi:10.1123/ijspp.6.2.160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Menetrier AMourot LBouhaddi MRegnard JTordi N. Compression sleeves increase tissue oxygen saturation but not running performance. Int J Sports Med. 2011;32(11):864868. PubMed ID: 22052027 doi:10.1055/s-0031-1283181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sear JAHoare TKScanlan ATAbt GADascombe BJ. The effects of whole-body compression garments on prolonged high-intensity intermittent exercise. J Strength Cond Res. 2010;24(7):19011910. PubMed ID: 20555284 doi:10.1519/JSC.0b013e3181db251b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Agu OHamilton GBaker D. Graduated compression stockings in the prevention of venous thromboembolism. Br J Surg. 1999;86(8):9921004. PubMed ID: 10460633 doi:10.1046/j.1365-2168.1999.01195.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Watanuki SMurata H. Effects of wearing compression stockings on cardiovascular responses. Ann Physiol Anthropol. 1994;13(3):121127. PubMed ID: 8043153 doi:10.2114/ahs1983.13.121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bochmann RPSeibel WHaase EHietschold VRödel HDeussen A. External compression increases forearm perfusion. J Appl Physiol. 2005;99(6):23372344. doi:10.1152/japplphysiol.00965.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Duffield RPortus M. Comparison of three types of full-body compression garments on throwing and repeat-sprint performance in cricket players. Br J Sports Med. 2007;41(7):409414. PubMed ID: 17341589 doi:10.1136/bjsm.2006.033753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bringard APerrey SBelluye N. Aerobic energy cost and sensation responses during submaximal running exercise--positive effects of wearing compression tights. Int J Sports Med. 2006;27(5):373378. PubMed ID: 16729379 doi:10.1055/s-2005-865718

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Scanlan ATDascombe BJReaburn PROsborne M. The effects of wearing lower-body compression garments during endurance cycling. Int J Sports Physiol Perform. 2008;3(4):424438. PubMed ID: 19223669 doi:10.1123/ijspp.3.4.424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Duffield RCannon JKing M. The effects of compression garments on recovery of muscle performance following high-intensity sprint and plyometric exercise. J Sci Med Sport. 2010;13(1):136140. PubMed ID: 19131276 doi:10.1016/j.jsams.2008.10.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Houghton LADawson BMaloney SK. Effects of wearing compression garments on thermoregulation during simulated team sport activity in temperate environmental conditions. J Sci Med Sport. 2009;12(2):303309. PubMed ID: 18078787 doi:10.1016/j.jsams.2007.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Higgins TNaughton GABurgess D. Effects of wearing compression garments on physiological and performance measures in a simulated game-specific circuit for netball. J Sci Med Sport. 2009;12(1):223226. PubMed ID: 18078789 doi:10.1016/j.jsams.2007.08.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sperlich BBorn DPZinner CHauser AHolmberg HC. Does upper-body compression improve 3 × 3-min double-poling sprint performance? Int J Sports Physiol Perform. 2014;9(1):4857. PubMed ID: 23881333 doi:10.1123/ijspp.2013-0137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35(9):757777. PubMed ID: 16138786 doi:10.2165/00007256-200535090-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Brophy-Williams NDriller MWShing CMFell JWHalson SL. Confounding compression: the effects of posture, sizing and garment type on measured interface pressure in sports compression clothing. J Sports Sci. 2015;33(13):14031410. PubMed ID: 25530213 doi:10.1080/02640414.2014.990489

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cope MDelpy DT. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988;26(3):289294. PubMed ID: 2855531 doi:10.1007/BF02447083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    De Blasi RAFerrari MNatali AConti GMega AGasparetto A. Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy. J Appl Physiol. 1994;76(3):13881393. doi:10.1152/jappl.1994.76.3.1388

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Vercruyssen FEasthope CBernard Tet al. The influence of wearing compression stockings on performance indicators and physiological responses following a prolonged trail running exercise. Eur J Sport Sci. 2014;14(2):144150. PubMed ID: 24533521 doi:10.1080/17461391.2012.730062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hopker JGO’Grady CPageaux B. Prolonged constant load cycling exercise is associated with reduced gross efficiency and increased muscle oxygen uptake. Scand J Med Sci Sports. 2017;27(4):408417. PubMed ID: 26993076 doi:10.1111/sms.12673

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Van Beekvelt MCColier WNWevers RAVan Engelen BG. Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle. J Appl Physiol. 2001;90(2):511519. doi:10.1152/jappl.2001.90.2.511

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Racinais SBishop DDenis RLattier GMendez-Villaneuva APerrey S. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Med Sci Sports Exerc. 2007;39(2):268274. PubMed ID: 17277590 doi:10.1249/01.mss.0000251775.46460.cb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Curran-Everett D. Multiple comparisons: philosophies and illustrations. Am J Physiol Regul Integr Comp Physiol. 2000;279(1):R18.

  • 37.

    Kerhervé HASamozino PDescombe Fet al. Calf compression sleeves change biomechanics but not performance and physiological responses in trail running. Front Physiol. 2017;8:247. doi:10.3389/fphys.2017.00247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Ali ACaine MPSnow BG. Graduated compression stockings: physiological and perceptual responses during and after exercise. J Sports Sci. 2007;25(4):413419. PubMed ID: 17365528 doi:10.1080/02640410600718376

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sperlich BHaegele MKrüger MSchiffer THolmberg HCMester J. Cardio-respiratory and metabolic responses to different levels of compression during submaximal exercise. Phlebology. 2011;26(3):102106. PubMed ID: 21228356 doi:10.1258/phleb.2010.010017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Driller MWHalson SL. The effects of wearing lower body compression garments during a cycling performance test. Int J Sports Physiol Perform. 2013;8(3):300306. PubMed ID: 23006643 doi:10.1123/ijspp.8.3.300

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Varela-Sanz AEspaña JCarr NBoullosa DAEsteve-Lanao J. Effects of gradual-elastic compression stockings on running economy, kinematics, and performance in runners. J Strength Cond Res. 2011;25(10):29022910. PubMed ID: 21912341 doi:10.1519/JSC.0b013e31820f5049

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Lovell DIMason DGDelphinus EMMcLellan CP. Do compression garments enhance the active recovery process after high-intensity running? J Strength Cond Res. 2011;25(12):32643268. PubMed ID: 22082795 doi:10.1519/JSC.0b013e31821764f8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Argus CKDriller MWEbert TRMartin DTHalson SL. The effects of 4 different recovery strategies on repeat sprint-cycling performance. Int J Sports Physiol Perform. 2013;8(5):542548. PubMed ID: 23412547 doi:10.1123/ijspp.8.5.542

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Sperlich BHaegele MAchtzehn SLinville JHolmberg HCMester J. Different types of compression clothing do not increase sub-maximal and maximal endurance performance in well-trained athletes. J Sports Sci. 2010;28(6):609614. PubMed ID: 20391083 doi:10.1080/02640410903582768

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Rimaud DMessonnier LCastells JDevillard XCalmels P. Effects of compression stockings during exercise and recovery on blood lactate kinetics. Eur J Appl Physiol. 2010;110(2):425433. PubMed ID: 20512586 doi:10.1007/s00421-010-1503-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Driller MWHalson SL. The effects of lower-body compression garments on recovery between exercise bouts in highly-trained cyclists. J Sci Cycling. 2013;2(1):4550.

    • Search Google Scholar
    • Export Citation
  • 47.

    Brophy-Williams NDriller MWKitic CMFell JWHalson SL. Effect of compression socks worn between repeated maximal running bouts. Int J Sports Physiol Perform. 2017;12(5):621627. PubMed ID: 27632195 doi:10.1123/ijspp.2016-0162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Broatch JRPetersen ABishop DJ. Postexercise cold water immersion benefits are not greater than the placebo effect. Med Sci Sports Exerc. 2014;46(11):21392147. PubMed ID: 24674975 doi:10.1249/MSS.0000000000000348

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 192 192 74
Full Text Views 13 13 3
PDF Downloads 3 3 0
Altmetric Badge
PubMed
Google Scholar
Cited By