Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance During Repeated-Sprint Cycling

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Evidence supporting the use of lower-limb compression garments during repeated-sprint exercise (RSE) with short rest periods, where performance will rely heavily on aerobic metabolism, is lacking. Methods: A total of 20 recreationally active participants completed 2 cycling RSE sessions, with and without lower-limb compression tights. The RSE session consisted of 4 sets of 10 × 6-s maximal sprints on a wind-braked cycle ergometer, interspaced by 24 s of recovery between bouts and 2 min of recovery between sets. Muscle oxygen consumption (mV˙O2) of, and blood flow (mBF) to, the right vastus lateralis muscle was measured during exercise using near-infrared spectroscopy and venous/arterial occlusions of the right lower limb. Cycling performance, oxygen consumption (V˙O2), heart rate, and capillary blood samples (lactate, pH, bicarbonate, and base excess) were also measured/taken throughout the session. Results: Compared with control, peak power (40.7 [19.9] W; mean ± 95% confidence intervals) and mBF (0.101 [0.061] mL·min−1·100 g−1) were higher, and heart rate (2  [1] beats/min) was lower, when participants wore compression (P < .05). mV˙O2, V˙O2, blood lactate, and heart rate increased as a result of exercise (P < .05), with no differences between conditions. Similarly, blood pH, bicarbonate, and base excess decreased as a result of exercise (P < .05), with no difference between conditions. Conclusions: Wearing lower-limb compression tights during RSE with short intervals of rest improved cycling performance, vastus lateralis mBF, and heart rate. These results provide novel data to support the notion that lower-limb compression garments aid RSE performance, which may be related to local and/or central blood flow.

Broatch and Bishop are with the Inst for Health and Sport (IHES), Victoria University, Melbourne, Australia. Broatch and Halson are with the Dept of Physiology, Australia Inst of Sport, Belconnen, ACT, Australia. Bishop is also with the School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.

Broatch (james.broatch@vu.edu.au) is corresponding author.
  • 1.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability - part I: factors contributing to fatigue. Sports Med. 2011;41(8):673694. PubMed ID: 21780851 doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability - part II: recommendations for training. Sports Med. 2011;41(9):741756. PubMed ID: 21846163 doi:10.2165/11590560-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bishop D, Edge J, Goodman C. Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol. 2004;92(4–5):540547. PubMed ID: 15168128 doi:10.1007/s00421-004-1150-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Reilly T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J Sports Sci. 1997;15(3):257263. PubMed ID: 9232551 doi:10.1080/026404197367263

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Christmass MA, Richmond SE, Cable NT, Arthur PG, Hartmann PE. Exercise intensity and metabolic response in singles tennis. J Sports Sci. 1998;16(8):739747. PubMed ID: 10189079 doi:10.1080/026404198366371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mendez-Villanueva A, Edge J, Suriano R, Hamer P, Bishop D. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS ONE. 2012;7(12):51977. PubMed ID: 23284836 doi:10.1371/journal.pone.0051977

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lopez-Segovia M, Pareja-Blanco F, Jiménez-Reyes P, González-Badillo JJ. Determinant factors of repeat sprint sequences in young soccer players. Int J Sports Med. 2015;36(2):130136. PubMed ID: 25259593

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rampinini E, Sassi A, Morelli A, Mazzoni S, Fanchini M, Coutts AJ. Repeated-sprint ability in professional and amateur soccer players. Appl Physiol Nutr Metab. 2009;34(6):10481054. PubMed ID: 20029513 doi:10.1139/H09-111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Nevill AM. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol. 1995;482(pt 2):467480. doi:10.1113/jphysiol.1995.sp020533

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80(3):876884. doi:10.1152/jappl.1996.80.3.876

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993;75(2):712719. PubMed ID: 8226473 doi:10.1152/jappl.1993.75.2.712

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McGawley K, Bishop DJ. Oxygen uptake during repeated-sprint exercise. J Sci Med Sport. 2015;18(2):214218. PubMed ID: 24602687 doi:10.1016/j.jsams.2014.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Born DP, Sperlich B, Holmberg HC. Bringing light into the dark: effects of compression clothing on performance and recovery. Int J Sports Physiol Perform. 2013;8(1):418. PubMed ID: 23302134 doi:10.1123/ijspp.8.1.4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Born DP, Holmberg HC, Goernert F, Sperlich B. A novel compression garment with adhesive silicone stripes improves repeated sprint performance–a multi-experimental approach on the underlying mechanisms. BMC Sports Sci Med Rehabil. 2014;6:21. PubMed ID: 24914412 doi:10.1186/2052-1847-6-21

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Dascombe BJ, Hoare TK, Sear JA, Reaburn PR, Scanlan AT. The effects of wearing undersized lower-body compression garments on endurance running performance. Int J Sports Physiol Perform. 2011;6(2):160173. PubMed ID: 21725102 doi:10.1123/ijspp.6.2.160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Menetrier A, Mourot L, Bouhaddi M, Regnard J, Tordi N. Compression sleeves increase tissue oxygen saturation but not running performance. Int J Sports Med. 2011;32(11):864868. PubMed ID: 22052027 doi:10.1055/s-0031-1283181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sear JA, Hoare TK, Scanlan AT, Abt GA, Dascombe BJ. The effects of whole-body compression garments on prolonged high-intensity intermittent exercise. J Strength Cond Res. 2010;24(7):19011910. PubMed ID: 20555284 doi:10.1519/JSC.0b013e3181db251b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Agu O, Hamilton G, Baker D. Graduated compression stockings in the prevention of venous thromboembolism. Br J Surg. 1999;86(8):9921004. PubMed ID: 10460633 doi:10.1046/j.1365-2168.1999.01195.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Watanuki S, Murata H. Effects of wearing compression stockings on cardiovascular responses. Ann Physiol Anthropol. 1994;13(3):121127. PubMed ID: 8043153 doi:10.2114/ahs1983.13.121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bochmann RP, Seibel W, Haase E, Hietschold V, Rödel H, Deussen A. External compression increases forearm perfusion. J Appl Physiol. 2005;99(6):23372344. doi:10.1152/japplphysiol.00965.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Duffield R, Portus M. Comparison of three types of full-body compression garments on throwing and repeat-sprint performance in cricket players. Br J Sports Med. 2007;41(7):409414. PubMed ID: 17341589 doi:10.1136/bjsm.2006.033753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bringard A, Perrey S, Belluye N. Aerobic energy cost and sensation responses during submaximal running exercise--positive effects of wearing compression tights. Int J Sports Med. 2006;27(5):373378. PubMed ID: 16729379 doi:10.1055/s-2005-865718

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Scanlan AT, Dascombe BJ, Reaburn PR, Osborne M. The effects of wearing lower-body compression garments during endurance cycling. Int J Sports Physiol Perform. 2008;3(4):424438. PubMed ID: 19223669 doi:10.1123/ijspp.3.4.424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Duffield R, Cannon J, King M. The effects of compression garments on recovery of muscle performance following high-intensity sprint and plyometric exercise. J Sci Med Sport. 2010;13(1):136140. PubMed ID: 19131276 doi:10.1016/j.jsams.2008.10.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Houghton LA, Dawson B, Maloney SK. Effects of wearing compression garments on thermoregulation during simulated team sport activity in temperate environmental conditions. J Sci Med Sport. 2009;12(2):303309. PubMed ID: 18078787 doi:10.1016/j.jsams.2007.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Higgins T, Naughton GA, Burgess D. Effects of wearing compression garments on physiological and performance measures in a simulated game-specific circuit for netball. J Sci Med Sport. 2009;12(1):223226. PubMed ID: 18078789 doi:10.1016/j.jsams.2007.08.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sperlich B, Born DP, Zinner C, Hauser A, Holmberg HC. Does upper-body compression improve 3 × 3-min double-poling sprint performance? Int J Sports Physiol Perform. 2014;9(1):4857. PubMed ID: 23881333 doi:10.1123/ijspp.2013-0137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35(9):757777. PubMed ID: 16138786 doi:10.2165/00007256-200535090-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Brophy-Williams N, Driller MW, Shing CM, Fell JW, Halson SL. Confounding compression: the effects of posture, sizing and garment type on measured interface pressure in sports compression clothing. J Sports Sci. 2015;33(13):14031410. PubMed ID: 25530213 doi:10.1080/02640414.2014.990489

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cope M, Delpy DT. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988;26(3):289294. PubMed ID: 2855531 doi:10.1007/BF02447083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    De Blasi RA, Ferrari M, Natali A, Conti G, Mega A, Gasparetto A. Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy. J Appl Physiol. 1994;76(3):13881393. doi:10.1152/jappl.1994.76.3.1388

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Vercruyssen F, Easthope C, Bernard T, et al. The influence of wearing compression stockings on performance indicators and physiological responses following a prolonged trail running exercise. Eur J Sport Sci. 2014;14(2):144150. PubMed ID: 24533521 doi:10.1080/17461391.2012.730062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hopker JG, O’Grady C, Pageaux B. Prolonged constant load cycling exercise is associated with reduced gross efficiency and increased muscle oxygen uptake. Scand J Med Sci Sports. 2017;27(4):408417. PubMed ID: 26993076 doi:10.1111/sms.12673

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Van Beekvelt MC, Colier WN, Wevers RA, Van Engelen BG. Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle. J Appl Physiol. 2001;90(2):511519. doi:10.1152/jappl.2001.90.2.511

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Racinais S, Bishop D, Denis R, Lattier G, Mendez-Villaneuva A, Perrey S. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Med Sci Sports Exerc. 2007;39(2):268274. PubMed ID: 17277590 doi:10.1249/01.mss.0000251775.46460.cb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Curran-Everett D. Multiple comparisons: philosophies and illustrations. Am J Physiol Regul Integr Comp Physiol. 2000;279(1):R18.

  • 37.

    Kerhervé HA, Samozino P, Descombe F, et al. Calf compression sleeves change biomechanics but not performance and physiological responses in trail running. Front Physiol. 2017;8:247. doi:10.3389/fphys.2017.00247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Ali A, Caine MP, Snow BG. Graduated compression stockings: physiological and perceptual responses during and after exercise. J Sports Sci. 2007;25(4):413419. PubMed ID: 17365528 doi:10.1080/02640410600718376

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sperlich B, Haegele M, Krüger M, Schiffer T, Holmberg HC, Mester J. Cardio-respiratory and metabolic responses to different levels of compression during submaximal exercise. Phlebology. 2011;26(3):102106. PubMed ID: 21228356 doi:10.1258/phleb.2010.010017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Driller MW, Halson SL. The effects of wearing lower body compression garments during a cycling performance test. Int J Sports Physiol Perform. 2013;8(3):300306. PubMed ID: 23006643 doi:10.1123/ijspp.8.3.300

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Varela-Sanz A, España J, Carr N, Boullosa DA, Esteve-Lanao J. Effects of gradual-elastic compression stockings on running economy, kinematics, and performance in runners. J Strength Cond Res. 2011;25(10):29022910. PubMed ID: 21912341 doi:10.1519/JSC.0b013e31820f5049

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Lovell DI, Mason DG, Delphinus EM, McLellan CP. Do compression garments enhance the active recovery process after high-intensity running? J Strength Cond Res. 2011;25(12):32643268. PubMed ID: 22082795 doi:10.1519/JSC.0b013e31821764f8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Argus CK, Driller MW, Ebert TR, Martin DT, Halson SL. The effects of 4 different recovery strategies on repeat sprint-cycling performance. Int J Sports Physiol Perform. 2013;8(5):542548. PubMed ID: 23412547 doi:10.1123/ijspp.8.5.542

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Sperlich B, Haegele M, Achtzehn S, Linville J, Holmberg HC, Mester J. Different types of compression clothing do not increase sub-maximal and maximal endurance performance in well-trained athletes. J Sports Sci. 2010;28(6):609614. PubMed ID: 20391083 doi:10.1080/02640410903582768

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Rimaud D, Messonnier L, Castells J, Devillard X, Calmels P. Effects of compression stockings during exercise and recovery on blood lactate kinetics. Eur J Appl Physiol. 2010;110(2):425433. PubMed ID: 20512586 doi:10.1007/s00421-010-1503-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Driller MW, Halson SL. The effects of lower-body compression garments on recovery between exercise bouts in highly-trained cyclists. J Sci Cycling. 2013;2(1):4550.

    • Search Google Scholar
    • Export Citation
  • 47.

    Brophy-Williams N, Driller MW, Kitic CM, Fell JW, Halson SL. Effect of compression socks worn between repeated maximal running bouts. Int J Sports Physiol Perform. 2017;12(5):621627. PubMed ID: 27632195 doi:10.1123/ijspp.2016-0162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Broatch JR, Petersen A, Bishop DJ. Postexercise cold water immersion benefits are not greater than the placebo effect. Med Sci Sports Exerc. 2014;46(11):21392147. PubMed ID: 24674975 doi:10.1249/MSS.0000000000000348

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1054 886 84
Full Text Views 23 10 0
PDF Downloads 11 8 0