Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Context: In front-crawl swimming, the upper limbs perform alternating movements with the aim of achieving a continuous application of force in the water, leading to lower intracyclic velocity variation (dv). This parameter has been identified as a crucial criterion for swimmers’ evaluation. Purpose: To examine the assessment of intracyclic force variation (dF) and to analyze its relationship with dv and swimming performance. Methods: A total of 22 high-level male swimmers performed a maximal-effort 50-m front-crawl time trial and a 30-s maximal-effort fully tethered swimming test, which were randomly assigned. Instantaneous velocity was obtained by a speedometer and force by a strain-gauge system. Results: Similarity was observed between the tests, with dF attaining much higher magnitudes than dv (P < .001; d = 8.89). There were no differences in stroke rate or in physiological responses between tethered and free swimming, with a high level of agreement for the stroke rate and blood lactate increase. Swimming velocity presented a strong negative linear relationship with dF (r = −.826, P < .001) and a moderate negative nonlinear relationship with dv (r = .734, P < .01). With the addition of the maximum impulse to dF, multiple-regression analysis explained 83% of the free-swimming performance. Conclusions: Assessing dF is a promising approach for evaluating a swimmer’s performance. From the experiments, this new parameter showed that swimmers with higher dF also present higher dv, leading to a decrease in performance.

Morouço is with the Center for Rapid and Sustainable Product Development, Polytechnic Inst of Leiria, Leiria, Portugal. Barbosa is with the National Inst of Education, Nanyang Technological University, Singapore, Singapore. Arellano is with the Physical Education and Sport Dept, Faculty of Sports Sciences, University of Granada, Granada, Spain. Vilas-Boas is with the Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, and Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal.

Morouço (pedro.morouco@ipleiria.pt) is corresponding author.
  • 1.

    Barbosa TM, Bragada JA, Reis VM, Marinho DA, Carvalho C, Silva AJ. Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J Sci Med Sport. 2010;13(2):262–269. PubMed ID: 19409842 doi:10.1016/j.jsams.2009.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Vilas-Boas JP, Fernandes RJ, Barbosa TM. Intra-cycle velocity variations, swimming economy, performance and training in swimming. In: World Book of Swimming: From Science to Performance. Hauppauge, NY: Nova Science Publishers; 2010:119–134.

    • Search Google Scholar
    • Export Citation
  • 3.

    Zamparo P, Turri E, Silveira RP, Poli A. The interplay between arms-only propelling efficiency, power output and speed in master swimmers. Eur J Appl Physiol. 2014;114(6):1259–1268. PubMed ID: 24610246 doi:10.1007/s00421-014-2860-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Troup JP. The physiology and biomechanics of competitive swimming. Clin Sports Med. 1999;18(2):267–285. PubMed ID: 10230563 doi:10.1016/S0278-5919(05)70143-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Figueiredo P, Seifert L, Vilas-Boas JP, Fernandes RJ. Individual profiles of spatio-temporal coordination in high intensity swimming. Hum Mov Sci. 2012;31(5):1200–1212. PubMed ID: 22921924 doi:10.1016/j.humov.2012.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Formosa DP, Mason B, Burkett B. The force-time profile of elite front crawl swimmers. J Sports Sci. 2011;29(8):811–819. PubMed ID: 21500079 doi:10.1080/02640414.2011.561867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Papoti M, Vitório R, Araújo GG, et al. Determination of force corresponding to maximal lactate steady state in tethered swimming. Int J Exerc Sci. 2009;2(4):269–279. PubMed ID: 27182321

    • Search Google Scholar
    • Export Citation
  • 8.

    Sousa A, Figueiredo P, Zamparo P, Vilas-Boas JP, Fernandes RJ. Anaerobic alactic energy assessment in middle distance swimming. Eur J Appl Physiol. 2013;113(8):2153–2158. PubMed ID: 23609331 doi:10.1007/s00421-013-2646-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Reis VM, Marinho DA, Policarpo FB, Carneiro AL, Baldari C, Silva AJ. Examining the accumulated oxygen deficit method in front crawl swimming. Int J Sports Med. 2010;31(6):421–427. PubMed ID: 20301045 doi:10.1055/s-0030-1248286

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Guilherme L, Guglielmo A, Denadai BSé. Assessment of anaerobic power of swimmers: the correlation of laboratory tests on an arm ergometer with field tests in a swimming pool. J Strength Cond Res. 2000;14(4):395–398. doi:10.1519/00124278-200011000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Vandewalle H, Peres G, Sourabie B, Stouvenel O, Monod H. Force-velocity relationship and maximal anaerobic power during cranking exercise in young swimmers. Int J Sports Med. 1989;10(6):439–445. PubMed ID: 2628364 doi:10.1055/s-2007-1024940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kalva-Filho CA, Zagatto AM, Araújo MIC, et al. Relationship between aerobic and anaerobic parameters from 3-minute all-out tethered swimming and 400-m maximal front crawl effort. J Strength Cond Res. 2015;29(1):238–245. PubMed ID: 24979061 doi:10.1519/JSC.0000000000000592

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gourgoulis V, Boli A, Aggeloussis N, et al. The effect of leg kick on sprint front crawl swimming. J Sports Sci. 2014;32(3):278–289. PubMed ID: 24016316 doi:10.1080/02640414.2013.823224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Morouço PG, Marinho DA, Keskinen KL, Badillo JJ, Marques MC. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance. J Strength Cond Res. 2014;28(11):3093–3099. doi:10.1519/JSC.0000000000000509

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wei T, Mark R, Hutchison S. The fluid dynamics of competitive swimming. Annu Rev Fluid Mech. 2014;46:547–565. doi:10.1146/annurev-fluid-011212-140658

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Loturco I, Barbosa AC, Nocentini RK, et al. A correlational analysis of tethered swimming, swim sprint performance and dry-land power assessments. Int J Sports Med. 2016;37(3):211–218. PubMed ID: 26669251

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bollens E, Annemans L, Vaes W, Clarys JP. Peripheral EMG comparison between fully tethered and free front crawl swimming. In: Ungerechts B, Wilke K, Reischle K, eds. Swimming Science V. Champaign, IL: Human Kinetics Publishers Inc; 1988:173–181.

    • Search Google Scholar
    • Export Citation
  • 18.

    Keskinen KL. Evaluation of technique performances in freestyle swimming. Kinesiology. 1997;2(1):30–38.

  • 19.

    Morouço PG, Marinho DA, Fernandes RJ, Marques MC. Quantification of upper limb kinetic asymmetries in front crawl swimming. Hum Mov Sci. 2015;40:185–192. doi:10.1016/j.humov.2014.12.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Maglischo C, Maglischo E, Sharp R, Zier D, Katz A. Tethered and nontethered crawl swimming. In: Terauds J, Barthels K, Kreighbaum E, Mann R, Crakes J, eds. Proceedings of ISBS–Sports Biomechanics. Del Mar, CA: Academic Publication; 1984:163–176.

    • Search Google Scholar
    • Export Citation
  • 21.

    Gatta G, Cortesi M, Zamparo P. The relationship between power generated by thrust and power to overcome drag in elite short distance swimmers. PLoS ONE. 2016;11(9):0162387. PubMed ID: 27654992 doi:10.1371/journal.pone.0162387

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum; 1988.

  • 23.

    Psycharakis SG, Naemi R, Connaboy C, McCabe C, Sanders RH. Three-dimensional analysis of intracycle velocity fluctuations in frontcrawl swimming. Scand J Med Sci Sports. 2010;20(1):128–135. PubMed ID: 19486479 doi:10.1111/j.1600-0838.2009.00891.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Takagi H, Sugimoto S, Nishijima N, Wilson B. Swimming: differences in stroke phases, arm-leg coordination and velocity fluctuation due to event, gender and performance level in breaststroke. Sport Biomech. 2004;3(1):15–27. doi:10.1080/14763140408522827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Barbosa TM, Morouço PGF, Jesus S, et al. The interaction between intra-cyclic variation of the velocity and mean swimming velocity in young competitive swimmers. Int J Sports Med. 2013;34(2):123–130. PubMed ID: 22972251 doi:10.1055/s-0032-1312582

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Tella V, Toca-Herrera JL, Gallach JE, Benavent J, González LM, Arellano R. Effect of fatigue on the intra-cycle acceleration in front crawl swimming: a time–frequency analysis. J Biomech. 2008;41(1):86–92. PubMed ID: 17714719 doi:10.1016/j.jbiomech.2007.07.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Keskinen KL, Tilli LJ, Komi PV. Maximum velocity swimming: interrelationships of stroking characteristics, force production and anthropometric variables. Scand J Sport Sci. 1989;11(2):87–92.

    • Search Google Scholar
    • Export Citation
  • 28.

    Psycharakis SG, Paradisis GP, Zacharogiannis E. Assessment of accuracy, reliability and force measurement errors for a tethered swimming apparatus. Int J Perform Anal Sport. 2011;11(3):410–416. doi:10.1080/24748668.2011.11868560

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kalva-Filho CA, Zagatto AM, da Silva AS, de Araújo MY, de Almeida PB, Papoti M. Tethered 3-min all-out test did not predict the traditional critical force parameters in inexperienced swimmers. J Sports Med Phys Fitness. 2017;57(9):1126–1131.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Dos Santos KB, Pereira G, Papoti M, Bento PCB, Rodacki A. Propulsive force asymmetry during tethered-swimming. Int J Sports Med. 2013;34(7):606–611. PubMed ID: 23325714 doi:10.1055/s-0032-1327575

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Dadashi F, Crettenand F, Millet GP, Seifert L, Komar J, Aminian K. Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals. J Sports Sci. 2013;31(11):1251–1260. PubMed ID: 23560703 doi:10.1080/02640414.2013.778420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Mason B, Formosa D, Toussaint HM. A method to estimate active drag over a range of swimming velocities which may be used to evaluate the stroke mechanics of the swimmer. In: Kjendlie PL, Stallman RK, Cabri J, eds. Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming. Oslo, Norway: Norwegian School of Sport Sciences; 2010;9:124–127.

    • Search Google Scholar
    • Export Citation
  • 33.

    Yeater RA, Martin RB, White MK, Gilson KH. Tethered swimming forces in the crawl, breast and back strokes and their relationship to competitive performance. J Biomech. 1981;14(8):527–537. PubMed ID: 7276012 doi:10.1016/0021-9290(81)90002-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Morouço P, Keskinen KL, Vilas-Boas JP, Fernandes RJ. Relationship between tethered forces and the four swimming techniques performance. J Appl Biomech. 2011;27(2):161–169. doi:10.1123/jab.27.2.161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Dopsaj M, Matković I, Zdravković I, Dopsaj M, Matković I, Zdravković I. The relationship between 50m-freestyle results and characteristics of tethered forces in male sprint swimmers: a new approach to tethered swimming test. Phys Educ Sport. 2000;1:15–22.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 76 76 19
Full Text Views 7 7 1
PDF Downloads 4 4 1