Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Velocity strength training requires exercise modalities that allow athletes to reach very high movement velocity, which is limited during vertical movements involving body weight. Purpose: To quantify the mechanical outputs developed during horizontal squat jumps (HSJs), notably the movement velocity, in comparison with vertical squat jumps (SJs) with and without loads. Methods: Thirteen healthy male athletes performed SJs without additional loads (SJ0) and with a load of ∼60% of body mass (SJ60), and during HSJs performed lying on a roller device with (assisted HSJ [AHSJ]) and without (HSJ) rubber-band assistance. Instantaneous lower-limb extension velocity, force, and power output were measured and averaged over the push-off phase. Results: The force was significantly higher during SJ60 than during SJ0, which was higher than during HSJ and AHSJ. Extension velocity was significantly different across all conditions, with 0.86 (0.07), 1.29 (0.10), 1.59 (0.19), and 1.83 (0.19) m·s−1 for SJ60, SJ0, HSJ, and AHSJ conditions, respectively. Differences in force and velocity values between SJ0 and the other conditions were large to extremely large. Differences were observed in power values only between SJ60 and SJ0, SJ60 and AHSJ, and SJ0 and HSJ. Conclusions: HSJ modalities allow athletes to reach very to extremely largely greater lower-limb extension velocities (HSJ +24.0% [16%], AHSJ +42.8% [17.4%]) compared to those achieved during SJ0. HSJ and AHSJ modalities are inexpensive and practical modalities to train limb-extension velocity capabilities, that is, the ability of the neuromuscular system to produce force at high contraction velocities.

Samozino and Riviere are with the Interuniversity Laboratory of Motricity Biology, University Savoie Mont Blanc, Chambéry, France. Rossi is with the Interuniversity Laboratory of Motricity Biology, University of Lyon, UJM-Saint-Etienne, Saint-Etienne, France. Morin is with LAMHESS, Côte d’Azur University, Nice, France. Jimenez-Reyes is with the Faculty of Physical Sciences and Sport, Catholic University of San Antonio, Murcia, Spain.

Samozino (pierre.samozino@univ-smb.fr) is corresponding author.
  • 1.

    Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force-velocity profile in ballistic movements—altius: citius or fortius? Med Sci Sports Exerc. 2012;44(2):313–322. PubMed ID: 21775909 doi:10.1249/MSS.0b013e31822d757a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35(6):505–510. PubMed ID: 24227123

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267–272. PubMed ID: 26694658 doi:10.1123/ijspp.2015-0638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jimenez-Reyes P, Samozino P, Cuadrado-Penafiel V, Conceicao F, Gonzalez-Badillo JJ, Morin JB. Effect of countermovement on power-force-velocity profile. Eur J Appl Physiol. 2014;114(11):2281–2288. PubMed ID: 25048073 doi:10.1007/s00421-014-2947-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Jimenez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2016;7:677. PubMed ID: 28119624

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med. 2011;41(2):125–146. PubMed ID: 21244105 doi:10.2165/11538500-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Giroux C, Rabita G, Chollet D, Guilhem G. Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech. 2016;32(1):59–68. PubMed ID: 26398964 doi:10.1123/jab.2015-0070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Vuk S, Markovic G, Jaric S. External loading and maximum dynamic output in vertical jumping: the role of training history. Hum Mov Sci. 2012;31(1):139–151. PubMed ID: 21862162 doi:10.1016/j.humov.2011.04.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42(8):1582–1598. doi:10.1249/MSS.0b013e3181d2013a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    McBride JM, Triplett-McBride T, Davie A, Newton RU. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002;16(1):75–82. PubMed ID: 11834109

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Garcia-Ramos A, Torrejon A, Perez-Castilla A, Morales-Artacho AJ, Jaric S. Selective changes in the mechanical capacities of lower-body muscles after cycle-ergometer sprint training against heavy and light resistances. Int J Sports Physiol Perform. 2018;13(3):290–297. doi:10.1123/ijspp.2017-0239

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sheppard JM, Dingley AA, Janssen I, Spratford W, Chapman DW, Newton RU. The effect of assisted jumping on vertical jump height in high-performance volleyball players. J Sci Med Sport. 2011;14(1):85–89. PubMed ID: 20829109 doi:10.1016/j.jsams.2010.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Frost DM, Cronin J, Newton RU. A biomechanical evaluation of resistance: fundamental concepts for training and sports performance. Sports Med. 2010;40(4):303–326. PubMed ID: 20364875 doi:10.2165/11319420-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Newton RU, Kraemer WJ, Hakkinen K, Humphries B, Murphy AJ. Kinematics, kinetics, and muscle activation during explosive upper body movements. J Appl Biomech. 1996;12(1):31–43. doi:10.1123/jab.12.1.31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Argus CK, Gill ND, Keogh JW, Blazevich AJ, Hopkins WG. Kinetic and training comparisons between assisted, resisted, and free countermovement jumps. J Strength Cond Res. 2011;25(8):2219–2227. PubMed ID: 21654341 doi:10.1519/JSC.0b013e3181f6b0f4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Markovic G, Vuk S, Jaric S. Effects of jump training with negative versus positive loading on jumping mechanics. Int J Sports Med. 2011;32(05):365–372. doi:10.1055/s-0031-1271678

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Djuric S, Cuk I, Sreckovic S, Mirkov D, Nedeljkovic A, Jaric S. Selective effects of training against weight and inertia on muscle mechanical properties. Int J Sports Physiol Perform. 2016;11(7):927–932. doi:10.1123/ijspp.2015-0527

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jaric S, Markovic G. Leg muscles design: the maximum dynamic output hypothesis. Med Sci Sports Exerc. 2009;41(4):780–787. PubMed ID: 19276856 doi:10.1249/MSS.0b013e31818f2bfa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Suzovic D, Markovic G, Pasic M, Jaric S. Optimum load in various vertical jumps support the maximum dynamic output hypothesis. Int J Sports Med. 2013;34(11):1007–1014. PubMed ID: 23670357 doi:10.1055/s-0033-1337942

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cuk I, Mirkov D, Nedeljkovic A, Kukolj M, Ugarkovic D, Jaric S. Force-velocity property of leg muscles in individuals of different level of physical fitness. Sports Biomech. 2016;15(2):207–219. PubMed ID: 27111493 doi:10.1080/14763141.2016.1159724

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Frost DM, Cronin JB, Newton RU. A comparison of the kinematics, kinetics and muscle activity between pneumatic and free weight resistance. Eur J Appl Physiol. 2008;104(6):937–956. PubMed ID: 18830619 doi:10.1007/s00421-008-0821-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Samozino P, Morin JB, Hintzy F, Belli A. A simple method for measuring force, velocity and power output during squat jump. J Biomech. 2008;41(14):2940–2945. PubMed ID: 18789803 doi:10.1016/j.jbiomech.2008.07.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Giroux C, Rabita G, Chollet D, Guilhem G. What is the best method for assessing lower limb force-velocity relationship? Int J Sports Med. 2015;36(2):143–149. PubMed ID: 25259590

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jimenez-Reyes P, Samozino P, Pareja-Blanco F, et al. Validity of a simple method for measuring force-velocity-power profile in countermovement jump. Int J Sports Physiol Perform. 2017;12(1):36–43. PubMed ID: 27002490 doi:10.1123/IJSPP.2015-0484

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Asmussen E, Bonde-Petersen F. Storage of elastic energy in skeletal muscles in man. Acta Physiol Scand. 1974;91(3):385–392. PubMed ID: 4846332 doi:10.1111/j.1748-1716.1974.tb05693.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Nuzzo JL, McBride JM, Dayne AM, Israetel MA, Dumke CL, Triplett NT. Testing of the maximal dynamic output hypothesis in trained and untrained subjects. J Strength Cond Res. 2011;24(5):1269–1276. doi:10.1519/JSC.0b013e3181d68691

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Suchomel TJ, Comfort P, Lake JP. Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength Cond J. 2017;39(1):10–20. doi:10.1519/SSC.0000000000000275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Perez-Castilla A, Jaric S, Feriche B, Padial P, Garcia-Ramos A. Evaluation of muscle mechanical capacities through the two-load method: optimization of the load selection. J Strength Cond Res. 2018;32(5):1245–1253. doi:10.1519/JSC.0000000000001969

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rivière JR, Rossi J, Jimenez-Reyes P, Morin JB, Samozino P. Where does the one-repetition maximum exist on the force-velocity relationship in squat? Int J Sports Med. 2017;38(13):1035–1043. PubMed ID: 28965339 doi:10.1055/s-0043-116670

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bobbert MF, Gerritsen KG, Litjens MC, Van Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28(11):1402–1412. PubMed ID: 8933491 doi:10.1097/00005768-199611000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cronin J, McNair PJ, Marshall RN. Velocity specificity, combination training and sport specific tasks. J Sci Med Sport. 2001;4(2):168–178. PubMed ID: 11548916 doi:10.1016/S1440-2440(01)80027-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 91 91 16
Full Text Views 7 7 1
PDF Downloads 3 3 0