Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To examine the effect of postexercise cold-water immersion (CWI) protocols, compared with control (CON), on the magnitude and time course of core temperature (Tc) responses. Methods: Pooled-data analyses were used to examine the Tc responses of 157 subjects from previous postexercise CWI trials in the authors’ laboratories. CWI protocols varied with different combinations of temperature, duration, immersion depth, and mode (continuous vs intermittent). Tc was examined as a double difference (ΔΔTc), calculated as the change in Tc in CWI condition minus the corresponding change in CON. The effect of CWI on ΔΔTc was assessed using separate linear mixed models across 2 time components (component 1, immersion; component 2, postintervention). Results: Intermittent CWI resulted in a mean decrease in ΔΔTc that was 0.25°C (0.10°C) (estimate [SE]) greater than continuous CWI during the immersion component (P = .02). There was a significant effect of CWI temperature during the immersion component (P = .05), where reductions in water temperature of 1°C resulted in decreases in ΔΔTc of 0.03°C (0.01°C). Similarly, the effect of CWI duration was significant during the immersion component (P = .01), where every 1 min of immersion resulted in a decrease in ΔΔTc of 0.02°C (0.01°C). The peak difference in Tc between the CWI and CON interventions during the postimmersion component occurred at 60 min postintervention. Conclusions: Variations in CWI mode, duration, and temperature may have a significant effect on the extent of change in Tc. Careful consideration should be given to determine the optimal amount of core cooling before deciding which combination of protocol factors to prescribe.

Stephens, Gore, Miller, Versey, and Halson are with the Dept of Physiology, Australian Inst of Sport, Canberra, ACT, Australia. Stephens, Slater, and Askew are with the School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia. Sharpe is with the Statistical Consulting Centre, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia. Gore is also with the Research Inst for Sport and Exercise, University of Canberra, Bruce, ACT, Australia. Peiffer is with the School of Psychology and Exercise Science, Murdoch University, Perth, WA, Australia. Duffield is with the Sport and Exercise Discipline Group, Health, University of Technology Sydney (UTS), Lindfield, NSW, Australia. Minett is with the School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia. Crampton and Dunne are with the Dept of Physiology, Trinity College Dublin, Ireland.

Stephens (jessica.stephens@act.gov.au) is corresponding author.
  • 1.

    Ihsan M, Watson G, Abbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46(8):10951109. PubMed ID: 26888646 doi:10.1007/s40279-016-0483-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bleakley CM, Davison GW. What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. Br J Sports Med. 2010;44(3):179187. PubMed ID: 19945970 doi:10.1136/bjsm.2009.065565

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Minett GM, Duffield R, Billaut F, Cannon J, Portus MR, Marino FE. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat. Scand J Med Sci Sports. 2014;24(4):656666. PubMed ID: 23458430 doi:10.1111/sms.12060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Stephens JM, Halson S, Miller J, Slater GJ, Askew CD. Cold-water immersion for athletic recovery: one size does not fit all. Int J Sports Physiol Perform. 2017;12(1):29. PubMed ID: 27294485 doi:10.1123/ijspp.2016-0095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bieuzen F, Bleakley CM, Costello JT. Contrast water therapy and exercise induced muscle damage: a systematic review and meta-analysis. PLoS ONE. 2013;8(4):62356. PubMed ID: 23626806 doi:10.1371/journal.pone.0062356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Minett GM, Costello JT. Specificity and context in post-exercise recovery: it is not a one-size-fits-all approach. Front Physiol. 2015;6:130. PubMed ID: 25964762 doi:10.3389/fphys.2015.00130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Vaile J, Halson S, Gill N, Dawson B. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. J Sports Sci. 2008;26(5):431440. PubMed ID: 18274940 doi:10.1080/02640410701567425

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Vaile J, Halson S, Gill N, Dawson B. Effect of hydrotherapy on recovery from fatigue. Int J Sports Med. 2008;29(7):539544. PubMed ID: 18058595 doi:10.1055/s-2007-989267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Vaile J, O’Hagan C, Stefanovic B, Walker M, Gill N, Askew CD. Effect of cold water immersion on repeated cycling performance and limb blood flow. Br J Sports Med. 2011;45(10):825829. PubMed ID: 20233843 doi:10.1136/bjsm.2009.067272

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB. Effect of a 5-min cold-water immersion recovery on exercise performance in the heat. Br J Sports Med. 2010;44(6):461465. PubMed ID: 18539654 doi:10.1136/bjsm.2008.048173

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB. Effect of cold-water immersion duration on body temperature and muscle function. J Sports Sci. 2009;27(10):987993. PubMed ID: 19847682 doi:10.1080/02640410903207424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Buchheit M, Peiffer JJ, Abbiss CR, Laursen PB. Effect of cold water immersion on postexercise parasympathetic reactivation. Am J Physiol Heart Circ Physiol. 2009;296(2):H421427. PubMed ID: 19074671 doi:10.1152/ajpheart.01017.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Getto CN, Golden G. Comparison of active recovery in water and cold-water immersion after exhaustive exercise. Athl Train Sports Health Care. 2013;5(4):169176.

    • Search Google Scholar
    • Export Citation
  • 14.

    Machado AF, Ferreira PH, Micheletti JK, et al. Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Med. 2016;46(4):503514. PubMed ID: 26581833 doi:10.1007/s40279-015-0431-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Machado AF, Almeida AC, Micheletti JK, et al. Dosages of cold-water immersion post exercise on functional and clinical responses: a randomized controlled trial. Scand J Med Sci Sports. 2017;27(11):13561363. PubMed ID: 27430594 doi:10.1111/sms.12734

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB. Effect of cold water immersion on repeated 1-km cycling performance in the heat. J Sci Med Sport. 2010;13(1):112116. PubMed ID: 18948061 doi:10.1016/j.jsams.2008.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Stanley J, Peake JM, Coombes JS, Buchheit M. Central and peripheral adjustments during high-intensity exercise following cold water immersion. Eur J Appl Physiol. 2014;114(1):147163. PubMed ID: 24158407 doi:10.1007/s00421-013-2755-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Stephens JM, Halson S, Miller J, Slater G, Chapman D, Askew C. Effect of body composition on physiological responses to cold-water immersion and the recovery of exercise performance. Int J Sports Physiol Perform. 2018;13(3):382389. doi:10.1123/ijspp.2017-0083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pointon M, Duffield R, Cannon J, Marino FE. Cold water immersion recovery following intermittent-sprint exercise in the heat. Eur J Appl Physiol. 2012;112(7):24832494. PubMed ID: 22057508 doi:10.1007/s00421-011-2218-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Dunne A, Crampton D, Egana M. Effect of post-exercise hydrotherapy water temperature on subsequent exhaustive running performance in normothermic conditions. J Sci Med Sport. 2013;16(5):466471. PubMed ID: 23246445 doi:10.1016/j.jsams.2012.11.884

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Versey NG. Hydrotherapy and Recovery From Exercise Induced Fatigue: Performance Effects and Mechanisms Involved [dissertation]. Perth, WA, Australia: University of Western Australia Research Repository: School of Sport Science, University of Western Australia; 2012.

    • Search Google Scholar
    • Export Citation
  • 22.

    Crampton D. The Use of Water Immersion as a Recovery Intervention Following High-Intensity Excercise: An Investigation of the Physiological and Performance Effects. [dissertation]. Dublin, Ireland: Trinity’s Access to Research Archive: Department of Physiology, Trinity College Dublin; 2012.

    • Search Google Scholar
    • Export Citation
  • 23.

    Halson SL, Quod MJ, Martin DT, Gardner AS, Ebert TR, Laursen PB. Physiological responses to cold water immersion following cycling in the heat. Int J Sports Physiol Perform. 2008;3(3):331346. PubMed ID: 19211945 doi:10.1123/ijspp.3.3.331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Peiffer JJ, Abbiss CR, Nosaka K, Peake JM, Laursen PB. Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J Sci Med Sport. 2009;12(1):9196. PubMed ID: 18083634 doi:10.1016/j.jsams.2007.10.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Vaile J. Effect of Hydrotherapy on Recovery of Muscle-Damage and Exercise-Induced Fatigue: School of Sports Science [dissertation]. Perth, WA, Australia: University of Western Australia; 2008.

    • Export Citation
  • 26.

    Stephens J, Halson S, Vaile J, Slater G, Askew C. Effect of body composition on core temperature responses to post-exercise cold water immersion. J Sci Med Sport. 2015;19:e4. doi:10.1016/j.jsams.2015.12.390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Stephens JM, Halson SL, Miller J, Slater GJ, Askew CD. Influence of body composition on physiological responses to post-exercise hydrotherapy. J Sports Sci. 2018:36(9):10441053. doi:10.1080/02640414.2017.1355062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    de Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996;29(9):12231230. PubMed ID: 8872282 doi:10.1016/0021-9290(95)00178-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Peiffer JJ, Abbiss CR, Nosaka K, Peake JM, Laursen PB. Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J Sci Med Sport. 2009;12(1):9196.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Wood SN. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc. 2004;99:673686. doi:10.1198/016214504000000980

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Team RC. R: a language and environment for statistical computing. 2014. http://www.R-project.org/. Accessed April 4, 2016.

    • Export Citation
  • 32.

    White GE, Rhind SG, Wells GD. The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur J Appl Physiol. 2014;114(11):23532367. PubMed ID: 25074283 doi:10.1007/s00421-014-2954-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Romet TT. Mechanism of afterdrop after cold water immersion. J Appl Physiol. 1988;65(4):15351538. PubMed ID: 3182516 doi:10.1152/jappl.1988.65.4.1535

  • 34.

    Seo Y, Kim CH, Ryan EJ, Gunstad J, Glickman EL, Muller MD. Cognitive function during lower body water immersion and post-immersion afterdrop. Aviat Space Environ Med. 2013;84(9):921926. PubMed ID: 24024303 doi:10.3357/ASEM.3571.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Leeder JD, van Someren KA, Bell PG, et al. Effects of seated and standing cold water immersion on recovery from repeated sprinting. J Sports Sci. 2015;33(15):15441552. PubMed ID: 25573221 doi:10.1080/02640414.2014.996914

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Halson S. Does the time frame between exercise influence the effectiveness of hydrotherapy for recovery? Int J Sports Physiol Perform. 2011;6:147159. PubMed ID: 21725101 doi:10.1123/ijspp.6.2.147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Zhang Y, Davis JK, Casa DJ, Bishop PA. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc. 2015;47(11):24642472. PubMed ID: 25910052 doi:10.1249/MSS.0000000000000693

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1027 882 144
Full Text Views 23 20 3
PDF Downloads 12 11 0