Comparing Global Positioning System and Global Navigation Satellite System Measures of Team-Sport Movements

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To compare data from conventional global positioning system (GPS-) and new global navigation satellite system (GNSS-) enabled tracking devices and to examine the interunit reliability of GNSS devices. Methods: Interdevice differences between 10-Hz GPS and GNSS devices were examined during laps (n = 40) of a simulated game circuit and during elite hockey matches (n = 21); GNSS interunit reliability was also examined during laps of the simulated game circuit. Differences in distance values and measures in 3 velocity categories (low <3 m·s−1; moderate 3–5 m·s−1; and high >5 m·s−1) and acceleration/deceleration counts (>1.46 and <−1.46 m·s−2) were examined using 1-way analysis of variance. Interunit GNSS reliability was examined using the coefficient of variation (CV) and intraclass correlation coefficient. Results: Interdevice differences (P < .05) were found for measures of peak deceleration, low-speed distance, percentage of total distance at low speed, and deceleration count during the simulated game circuit and for all measures except total distance and low-speed distance during hockey matches. Interunit (GNSS) differences (P < .05) were not found. The coefficient of variation was below 5% for total distance, average and peak speeds and distance and percentage of total distance of low-speed running. The GNSS devices had a lower horizontal dilution of precision score than GPS devices in all conditions. Conclusions: These findings suggest that GNSS devices may be more sensitive than GPS devices in quantifying the physical demands of team-sport movements, but further study into the accuracy of GNSS devices is required.

Jackson, Polglaze, Dawson, and Peeling are with School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA, Australia. King is with the Queensland Academy of Sport, Brisbane, QLD, Australia. Peeling is also with the Western Australian Inst of Sport, Mt Claremont, WA, Australia.

Polglaze (ted.polglaze@research.uwa.edu.au) is corresponding author.
  • 1.

    Coughlan GF, Green BS, Pook PT, Toolan E, O’Connor SP. Physical game demands in elite rugby union: a global positioning system analysis and possible implications for rehabilitation. J Orthop Sports Phys Ther. 2011;41(8):600–605. PubMed ID: 21654094 doi:10.2519/jospt.2011.3508

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Wisbey B, Montgomery PG, Pyne DB, Rattray B. Quantifying movement demands of AFL football using GPS tracking. J Sci Med Sport. 2010;13(5):531–536. PubMed ID: 19897414 doi:10.1016/j.jsams.2009.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gabbett TJ. GPS analysis of elite women’s field hockey training and competition. J Strength Cond Res. 2010;24(5):1321–1324. PubMed ID: 20386482 doi:10.1519/JSC.0b013e3181ceebbb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170–178. PubMed ID: 20010116 doi:10.1249/MSS.0b013e3181ae5cfd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Coutts AJ, Kempton T, Sullivan C, Bilsborough J, Cordy J, Rampinini E. Metabolic power and energetic costs of professional Australian Football match-play. J Sci Med Sport. 2015;18(2):219–224. PubMed ID: 24589369 doi:10.1016/j.jsams.2014.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Malone JJ, Lovell R, Varley MC, Coutts AJ. Unpacking the black box: applications and considerations for using GPS devices in sport. Int J Sports Physiol Perform. 2017;12(suppl 2):218–226. PubMed ID: 27736244 doi:10.1123/ijspp.2016-0236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Coutts AJ, Duffield R. Validity and reliability of GPS devices for measuring movement demands of team sports. J Sci Med Sport. 2010;13(1):133–135. PubMed ID: 19054711 doi:10.1016/j.jsams.2008.09.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Jennings D, Cormack S, Coutts AJ, Boyd L, Aughey RJ. The validity and reliability of GPS units for measuring distance in team sport specific running patterns. Int J Sports Physiol Perform. 2010;5(3):328–341. PubMed ID: 20861523 doi:10.1123/ijspp.5.3.328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Edgecomb SJ, Norton KI. Comparison of global positioning and computer-based tracking systems for measuring player movement distance during Australian football. J Sci Med Sport. 2006;9(1–2):25–32. PubMed ID: 17182281 doi:10.1016/j.jsams.2006.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pyne DB, Petersen C, Higham DG, Cramer MN. Comparison of 5- and 10-Hz GPS technology for team sport analysis: 837: June 3 3:15 PM–3:30 PM. Med Sci Sports Exerc. 2010;42(5):78. doi:10.1249/01.MSS.0000385563.66526.6d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Rampinini E, Alberti G, Fiorenza M, et al. Accuracy of GPS devices for measuring high-intensity running in field-based team sports. Int J Sports Med. 2015;36(1):49–53. PubMed ID: 25254901

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Johnston RJ, Watsford ML, Kelly SJ, Pine MJ, Spurrs RW. Validity and interunit reliability of 10 Hz and 15 Hz GPS units for assessing athlete movement demands. J Strength Cond Res. 2014;28(6):1649–1655. PubMed ID: 24276300 doi:10.1519/JSC.0000000000000323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Rawstorn JC, Maddison R, Ali A, Foskett A, Gant N. Rapid directional change degrades GPS distance measurement validity during intermittent intensity running. PLoS ONE. 2014;9(4):e93693. PubMed ID: 24733158 doi:10.1371/journal.pone.0093693

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Akenhead R, French D, Thompson KG, Hayes PR. The acceleration dependent validity and reliability of 10Hz GPS. J Sci Med Sport. 2014;17(5):562–566. PubMed ID: 24041579 doi:10.1016/j.jsams.2013.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Supej M, Holmberg HC. A new time measurement method using a high-end global navigation satellite system to analyze alpine skiing. Res Q Exerc Sport. 2011;82(3):400–411. PubMed ID: 21957698 doi:10.1080/02701367.2011.10599772

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gilgien M, Sporri J, Limpach P, Geiger A, Muller E. The effect of different Global Navigation Satellite System methods on positioning accuracy in elite alpine skiing. Sensors. 2014;14(10):18433–18453. PubMed ID: 21957698 doi:10.3390/s141018433

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bishop D, Spencer M, Duffield R, Lawrence S. The validity of a repeated sprint ability test. J Sci Med Sport. 2001;4(1):19–29. PubMed ID: 11339490 doi:10.1016/S1440-2440(01)80004-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Australian Government. Bureau of Meteorology. Perth in May 2016: a cool, wet month. 2016. http://www.bom.gov.au/climate/current/month/wa/archive/201605.perth.shtml. Accessed October 26, 2016.

    • Export Citation
  • 19.

    Varley MC, Jaspers A, Helsen WF, Malone JJ. Methodological considerations when quantifying high-intensity efforts in team sport using global positioning system technology. Int J Sports Physiol Perform. 2017;12(8):1059–1068. PubMed ID: 28051343 doi:10.1123/ijspp.2016-0534

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG. Summarizing data: precision of measurement. 2011. http://sportsci.org/resource/stats/precision.html. Accessed January 30, 2017.

    • Export Citation
  • 21.

    Fleiss JL. Reliability of Measurement. The Design and Analysis of Clinical Experiments. New York, NY: John Wiley & Sons, Inc; 1999:1–32.

  • 22.

    Hopkins WG. A scale of magnitudes for effect statistics. 2002. http://www.sportsci.org/resource/stats/effectmag.html. Accessed October 8, 2016.

    • Export Citation
  • 23.

    Portas MD, Harley JA, Barnes CA, Rush CJ. The validity and reliability of 1-Hz and 5-Hz global positioning systems for linear, multidirectional, and soccer-specific activities. Int J Sports Physiol Perform. 2010;5(4):448–458. PubMed ID: 21266730 doi:10.1123/ijspp.5.4.448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gray AJ, Jenkins D, Andrews MH, Taaffe DR, Glover ML. Validity and reliability of GPS for measuring distance travelled in field-based team sports. J Sports Sci. 2010;28(12):1319–1325. PubMed ID: 20859825 doi:10.1080/02640414.2010.504783

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Varley MC, Fairweather IH, Aughey RJ. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J Sports Sci. 2012;30(2):121–127. PubMed ID: 22122431 doi:10.1080/02640414.2011.627941

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 140 140 15
Full Text Views 13 13 1
PDF Downloads 6 6 0