Dynamics of the Metabolic Response During a Competitive 100-m Freestyle in Elite Male Swimmers

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Philippe Hellard
Search for other papers by Philippe Hellard in
Current site
Google Scholar
PubMed
Close
,
Robin Pla
Search for other papers by Robin Pla in
Current site
Google Scholar
PubMed
Close
,
Ferran A. Rodríguez
Search for other papers by Ferran A. Rodríguez in
Current site
Google Scholar
PubMed
Close
,
David Simbana
Search for other papers by David Simbana in
Current site
Google Scholar
PubMed
Close
, and
David B. Pyne
Search for other papers by David B. Pyne in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To compare the dynamics of maximal oxygen uptake (V˙O2), blood lactate ([La]b), total energy expenditure (Etot), and contributions of the aerobic (Eaer), alactic anaerobic (Ean,al), and lactic anaerobic (Ean,lac) metabolic energy pathways over 4 consecutive 25-m laps (L0–25, L25–50, etc) of a 100-m maximal freestyle swim. Methods: Elite swimmers comprising 26 juniors (age = 16 [1] y) and 23 seniors (age = 24 [5] y) performed 100 m at maximal speed and then 3 trials (25, 50, and 75 m) at the same pace as that of the 100 m. [La]b was collected, and V˙O2 was measured 20 s postexercise. Results: The estimated energetic contributions for the 100-m trial are presented as mean (SD): Eaer, 51% (8%); Ean,al, 18% (2%); Ean,lac, 31% (9%). V˙O2 increased from L0–25 to L25–50 (mean = 3.5 L·min−1; 90% confidence interval [CI], 3.4–3.7 L·min−1 to mean = 4.2 L·min−1; 90% CI, 4.0–4.3 L·min−1) and then stabilized in the 2nd 50 m (mean = 4.1 L·min−1; 90% CI, 3.9–4.3 L·min−1 to mean = 4.2 L·min−1; 90% CI, 4.0–4.4 L·min−1). Etot (juniors, 138 [18] kJ; seniors, 168 [26] kJ), Ean,al (juniors, 27 [3] kJ; seniors, 30 [3] kJ), and Ean,lac (juniors, 38 [12] kJ; seniors, 62 [24] kJ) were 11–58% higher in seniors. Faster swimmers (n = 26) had higher V˙O2(4.6L·min1, 90% CI 4.4–4.8 L·min−1 vs 3.9 L·min−1, 90% CI 3.6–4.2 L·min−1), and Eaer power was associated with fast performances (P < .001). Conclusion: Faster swimmers were characterized by higher V˙O2 and less time to reach the highest V˙O2 at ∼50 m of the 100-m swim. Anaerobic qualities become more important with age.

Hellard, Pla, and Simbana are with the Research Dept, French Swimming Federation, Pantin, France. Hellard is also with the Inst of Research of Medicine and Epidemiology of Sports (IRMES), Paris, France. Pla is also with the National Inst of Sport, Expertise, and Performance (INSEP), Paris, France. Rodríguez is with the Barcelona Sport Sciences Research Group and National Inst of Physical Education of Catalonia (INEFC), University of Barcelona, Barcelona, Spain. Simbana is with the Center for the Study of Transformations in Physical Activities and Sports (CETAPS)—EA 3832, University of Rouen Normandy, Mont Saint Aignan, France. Pyne is with the Research Inst for Sport and Exercise, University of Canberra, Canberra, ACT, Australia.

Hellard (hellard.ph@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Rodríguez FA, Mader A. Energy systems in swimming. In: Seifert L, Chollet D, Mujika I, eds. World Book of Swimming: From Science to Performance. Hauppauge, NY: Nova Science Publishers; 2011:225240.

    • Search Google Scholar
    • Export Citation
  • 2.

    Capelli C, Pendergast DR, Termin B. Energetics of swimming at maximal speeds in humans. Eur J Appl Physiol Occup Physiol. 1998;78(5):385393. PubMed ID: 9809837 doi:10.1007/s004210050435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Reiss VM, Marinho DA, Policarpo FB, Carneiro AL, Baldari C, Silva AJ. Examining the accumulated oxygen deficit in front-crawl swimming. Int J Sports Med. 2010;31:421427. doi:10.1055/s-0030-1248286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Ribeiro JP, Cadavid E, Baena J, Monsalvete E, Barna A, De Rose EH. Metabolic predictors of middle-distance swimming performance. Br J Sports Med. 1990;24(3):196200. PubMed ID: 2078807 doi:10.1136/bjsm.24.3.196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Rodríguez FA, Mader A. Energy metabolism during 400 and 100-m crawl swimming: computer simulation based on free swimming measurement. In: Chatard JC, ed. Biomechanics and Medicine in Swimming IX. Saint-Étienne, France: Publications de l’Université de Saint-Étienne; 2003:373378.

    • Search Google Scholar
    • Export Citation
  • 6.

    Jalab C, Enea C, Delpech N, Bernard O. Dynamics of oxygen uptake during a 100 m front crawl event, performed during competition [in French]. Appl Physiol Nutr Metab. 2011;36(2):219225. PubMed ID: 21609283 doi:10.1139/h10-107

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Baxter-Jones A, Goldstein H, Helms P. The development of aerobic power in young athletes. J Appl Physiol. 1993;75(3):11601167 doi:10.1152/jappl.1993.75.3.1160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kavouras S, Troup J. Growth and developmental changes in selected characteristics of age group swimmers. In: Troup JP, Hollander AP, Strasse DEA, eds. Biomechanics and Medicine in Swimming VII. London, UK: E. & F. N. Spon; 1996:234239.

    • Search Google Scholar
    • Export Citation
  • 9.

    Dotan R, Mitchell C, Cohen R, Klentrou P, Gabriel D, Falk B. Child-adult differences in muscle activation—a review. Pediatr Exerc Sci. 2012;24(1):221. PubMed ID: 22433260 doi:10.1123/pes.24.1.2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jürimäe J, Haljaste K, Cicchella A, et al. Analysis of swimming performance from physical, physiological, and biomechanical parameters in young swimmers. Pediatr Exerc Sci. 2007;19(1):7081. doi:10.1123/pes.19.1.70

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ferretti G, Narici MV, Binzoni T, et al. Determinants of peak muscle power: effects of age and physical conditioning. Eur J Appl Physiol Occup Physiol. 1994;68(2):111115. PubMed ID: 8194538 doi:10.1007/BF00244022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sousa A, Vilas-Boas JP, Fernandes RJ, Figueiredo P. VO2 at maximal and supramaximal intensities: lessons to high-intensity interval training in swimming. Int J Sports Physiol Perform. 2017;12(7):872877. PubMed ID: 27918660 doi:10.1123/ijspp.2016-0475

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hawley JA, Williams MM, Vickovic MM, Handcock PJ. Muscle power predicts freestyle swimming performance. Br J Sports Med. 1992;26:151155. PubMed ID: 1422650 doi:10.1136/bjsm.26.3.151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Costill DL, Kovaleski J, Porter D, Kirwan J, Fielding R, King D. Energy expenditure during front crawl swimming: predicting success in middle-distance events. Int J Sports Med. 1985;6(5):266270. PubMed ID: 4055188 doi:10.1055/s-2008-1025849

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    di Prampero PE, Ferretti G. The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol. 1999;118(2–3):103115. PubMed ID: 10647856 doi:10.1016/S0034-5687(99)00083-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Rodríguez FA, Lätt E, Jürimäe J, et al. VO2 kinetics in all-out arm stroke, leg kick and whole stroke front crawl 100-m swimming. Int J Sports Med. 2016;37(3):191196.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Zamparo P, Capelli C, Pendergast D. Energetics of swimming: a historical perspective. Eur J Appl Physiol. 2011;111(3):367378. PubMed ID: 20428884 doi:10.1007/s00421-010-1433-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rodríguez FA, Keskinen KL, Keskinen OP, Malvela M. Oxygen uptake kinetics during free swimming: a pilot study. In: Chatard JC, ed. Biomechanics and Medicine in Swimming IX. Saint-Étienne, France: Publications de l’Université de Saint-Étienne; 2003:379384.

    • Search Google Scholar
    • Export Citation
  • 19.

    Ribeiro J, Figueiredo P, Morais S, et al. Biomechanics, energetics and coordination during extreme swimming intensity: effects of performance level. J Sports Sci. 2017;35(16):16141621. PubMed ID: 27602781

    • Search Google Scholar
    • Export Citation
  • 20.

    Barbosa TM, Fernandes R, Keskinen KL, et al. Evaluation of the energy expenditure in competitive swimming strokes. Int J Sports Med. 2006;27(11):894899. PubMed ID: 16612740 doi:10.1055/s-2006-923776

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Seifert L, Chollet D, Chatard JC. Kinematic changes during a 100-m front crawl: effects of performance level and gender. Med Sci Sports Exerc. 2007;39(10):17841793. PubMed ID: 17909406 doi:10.1249/mss.0b013e3180f62f38

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Barstow TJ. Characterization of VO2 kinetics during heavy exercise. Med Sci Sports Exerc. 1994;26(11):13271334.

  • 23.

    Ogita F. Energetic in competitive swimming and its application for training. In: Vilas-Boas JP, Alves F, Marques A, eds. Biomechanics and Medicine in Swimming X. Vol 6. Porto: Portuguese Journal of Sport Sciences ; 2006:117121.

    • Search Google Scholar
    • Export Citation
  • 24.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31:725741. PubMed ID: 11547894 doi:10.2165/00007256-200131100-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Olesen HL, Raabo E, Bangsbo J, Secher NH. Maximal oxygen deficit of sprint and middle distance runners. Eur J Appl Physiol Occup Physiol. 1994;69(2):140146. PubMed ID: 7805668 doi:10.1007/BF00609406

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ingjer F. Development of maximal oxygen uptake in young elite male cross-country skiers: a longitudinal study. J Sports Sci. 1992;10(1):4963. PubMed ID: 1556778 doi:10.1080/02640419208729906

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Alves F, Reis J, Vleck V, Bruno P, Millet G. Oxygen uptake kinetics in heavy intensity exercise and endurance performance in swimmers. Med Sci Sports Exerc. 2009;41:978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Zamparo P, Capelli C, Cautero M, Di Nino A. Energy cost of front-crawl swimming at supra-maximal speeds and underwater torque in young swimmers. Eur J Appl Physiol. 2000;83(6):487491. PubMed ID: 11192054 doi:10.1007/s004210000318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hirvonen J, Nummela A, Rusko H, Rehunen S, Härkönen M. Fatigue and changes of ATP, creatine phosphate, and lactate during the 400-m sprint. Can J Sport Sci. 1992;17(2):141144. PubMed ID: 1324108

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Chaverri D, Iglesias X, Schuller T, Hoffmann U, Rodriguez FA. Estimating peak oxygen uptake based on postexercise measurements in swimming. Appl Physiol Nutr Metab. 2016;41(6):588596. PubMed ID: 27226382 doi:10.1139/apnm-2015-0524

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2423 1137 52
Full Text Views 33 9 2
PDF Downloads 39 8 3