Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Background: Research has shown that gross efficiency (GE) declines during high-intensity exercise, but the time course of recovery of GE after high-intensity exercise has not yet been investigated. Purpose: To determine the time course of the recovery of GE after time trials (TTs) of different lengths. Methods: Nineteen trained male cyclists participated in this study. Before and after TTs of 2000 and 20,000 m, subjects performed submaximal exercise at 55% of the power output attained at maximal oxygen uptake (PVO2max). The postmeasurement continued until 30 min after the end of the TT, during which GE was determined over 3-min intervals. The magnitude-based-inferences approach was used for statistical analysis. Results: GE decreased substantially during the 2000-m and 20,000-m TTs (−11.8% [3.6%] and −6.2% [4.0%], respectively). A most likely and very likely recovery of GE was found during the first half of the submaximal exercise bout performed after the 2000-m, with only a possible increase in GE during the first part of the submaximal exercise bout performed after the 20,000-m. After both distances, GE did not fully recover to the initial pre-TT values, as the difference between the pre-TT value and average GE value of minutes 26–29 was still most likely negative for both the 2000- and 20,000-m (−6.1% [2.8%] and −7.0% [4.5%], respectively). Conclusions: It is impossible to fully recover GE after TTs of 2000- or 20,000-m during 30 min of submaximal cycling exercise performed at an intensity of 55% PVO2max.

The authors are with the Dept of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. de Koning is also with the Dept of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI.

Noordhof (d.a.noordhof@vu.nl) is corresponding author.
  • 1.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):3544. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    de Koning JJ, Noordhof DA, Lucia A, Foster C. Factors affecting gross efficiency in cycling. Int J Sports Med. 2012;33(11):880885. PubMed ID: 22706941 doi:10.1055/s-0032-1306285

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ettema G, Lorås HW. Efficiency in cycling: a review. Eur J Appl Physiol. 2009;106(1):114. PubMed ID: 19229554 doi:10.1007/s00421-009-1008-7

  • 4.

    van Ingen Schenau GJ, Cavanagh PR. Power equations in endurance sports. J Biomech. 1990;23(9):865881. PubMed ID: 2211732 doi:10.1016/0021-9290(90)90352-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Foster C, Lucia A. Running economy: the forgotten factor in elite performance. Sports Med. 2007;37(4–5):316319. PubMed ID: 17465597 doi:10.2165/00007256-200737040-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hopker JG, Coleman DA, Wiles JD. Differences in efficiency between trained and recreational cyclists. Appl Physiol Nutr Metab. 2007;32(6):10361042. PubMed ID: 18059575 doi:10.1139/H07-070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ainegren M, Carlsson P, Tinnsten M, Laaksonen MS. Skiing economy and efficiency in recreational and elite cross-country skiers. J Strength Cond Res. 2013;27(5):12391252. PubMed ID: 22344058 doi:10.1519/JSC.0b013e31824f206c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    de Koning JJ, Bobbert MF, Foster C. Determination of optimal pacing strategy in track cycling with an energy flow model. J Sci Med Sport. 1999;2(3):266277. PubMed ID: 10668763 doi:10.1016/S1440-2440(99)80178-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Hettinga FJ, de Koning JJ, de Vrijer A, Wust RC, Daanen HA, Foster C. The effect of ambient temperature on gross-efficiency in cycling. Eur J Appl Physiol. 2007;101(4):465471. PubMed ID: 17661069 doi:10.1007/s00421-007-0519-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sahlin K, Sorensen JB, Gladden LB, Rossiter HB, Pedersen PK. Prior heavy exercise eliminates V ˙ O 2 slow component and reduces efficiency during submaximal exercise in humans. J Physiol. 2005;564(pt 3):765773. PubMed ID: 15746165 doi:10.1113/jphysiol.2005.083840

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Noordhof DA, Mulder RC, Malterer KR, Foster C, de Koning JJ. The decline in gross efficiency in relation to cycling time-trial length. Int J Sports Physiol Perform. 2015;10(1):6470. PubMed ID: 24911784 doi:10.1123/ijspp.2014-0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    de Koning JJ, Noordhof DA, Uitslag TP, Galiart RE, Dodge C, Foster C. An approach to estimating gross efficiency during high-intensity exercise. Int J Sports Physiol Perform. 2013;8(6):682684. PubMed ID: 23006833 doi:10.1123/ijspp.8.6.682

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Asan Grasaas C, Ettema G, Hegge AM, Skovereng K, Sandbakk O. Changes in technique and efficiency after high-intensity exercise in cross-country skiers. Int J Sports Physiol Perform. 2014;9(1):1924. PubMed ID: 23982869 doi:10.1123/ijspp.2013-0344

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Burnley M, Doust JH, Jones AM. Time required for the restoration of normal heavy exercise V ˙ O 2 kinetics following prior heavy exercise. J Appl Physiol. 2006;101(5):13201327. doi:10.1152/japplphysiol.00475.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Foster C, Schrager M, Snyder AC, Thompson NN. Pacing strategy and athletic performance. Sports Med. 1994;17(2):7785. PubMed ID: 8171225 doi:10.2165/00007256-199417020-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Noordhof DA, de Koning JJ, van Erp T, et al. The between and within day variation in gross efficiency. Eur J Appl Physiol. 2010;109(6):12091218. PubMed ID: 20464413 doi:10.1007/s00421-010-1497-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins WG. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sportscience. 2006;10(1):4650.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19(1):3642.

  • 21.

    Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31(3):472485. PubMed ID: 10188754 doi:10.1097/00005768-199903000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Thomas K, Goodall S, Stone M, Howatson G, St Clair Gibson A, Ansley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc. 2015;47(3):537546. PubMed ID: 25051388 doi:10.1249/MSS.0000000000000448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hoff J, Storen O, Finstad A, Wang E, Helgerud J. Increased blood lactate level deteriorates running economy in world class endurance athletes. J Strength Cond Res. 2016;30(5):13731378. PubMed ID: 26817745 doi:10.1519/JSC.0000000000001349

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopker JG, Coleman DA, Gregson HC, et al. The influence of training status, age, and muscle fiber type on cycling efficiency and endurance performance. J Appl Physiol. 2013;115(5):723729. doi:10.1152/japplphysiol.00361.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mujika I, Padilla S. Physiological and performance characteristics of male professional road cyclists. Sports Med. 2001;31(7):479487. PubMed ID: 11428685 doi:10.2165/00007256-200131070-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Vogt S, Heinrich L, Schumacher YO, et al. Power output during stage racing in professional road cycling. Med Sci Sports Exerc. 2006;38(1):147151. PubMed ID: 16394967 doi:10.1249/01.mss.0000183196.63081.6a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bishop D, Jenkins DG, Mackinnon LT. The effect of stage duration on the calculation of peak VO2 during cycle ergometry. J Sci Med Sport. 1998;1(3):171178. PubMed ID: 9783518 doi:10.1016/S1440-2440(98)80012-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Amann M, Subudhi A, Foster C. Influence of testing protocol on ventilatory thresholds and cycling performance. Med Sci Sports Exerc. 2004;36(4):613622. PubMed ID: 15064589 doi:10.1249/01.MSS.0000122076.21804.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 152 109 4
Full Text Views 16 14 1
PDF Downloads 5 4 0