Reduced Fatigue in Passive Versus Active Recovery: An Examination of Repeated-Change-of-Direction Sprints in Basketball Players

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Maria C. Madueno
Search for other papers by Maria C. Madueno in
Current site
Google Scholar
PubMed
Close
,
Vincent J. Dalbo
Search for other papers by Vincent J. Dalbo in
Current site
Google Scholar
PubMed
Close
,
Joshua H. Guy
Search for other papers by Joshua H. Guy in
Current site
Google Scholar
PubMed
Close
,
Kate E. Giamarelos
Search for other papers by Kate E. Giamarelos in
Current site
Google Scholar
PubMed
Close
,
Tania Spiteri
Search for other papers by Tania Spiteri in
Current site
Google Scholar
PubMed
Close
, and
Aaron T. Scanlan
Search for other papers by Aaron T. Scanlan in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To investigate the physiological and performance effects of active and passive recovery between repeated-change-of-direction sprints. Methods: Eight semiprofessional basketball players (age: 19.9 [1.5] y; stature: 183.0 [9.6] cm; body mass: 77.7 [16.9] kg; body fat: 11.8% [6.3%]; and peak oxygen consumption: 46.1 [7.6] mL·kg−1·min−1) completed 12 × 20-m repeated-change-of-direction sprints (Agility 5-0-5 tests) interspersed with 20 seconds of active (50% maximal aerobic speed) or passive recovery in a randomized crossover design. Physiological and perceptual measures included heart rate, oxygen consumption, blood lactate concentration, and rating of perceived exertion. Change-of-direction speed was measured during each sprint using the change-of-direction deficit (CODD), with summed CODD time and CODD decrement calculated as performance measures. Results: Average heart rate (7.3 [6.4] beats·min−1; P = .010; effect size (ES) = 1.09; very likely) and oxygen consumption (4.4 [5.0] mL·kg−1·min−1; P = .12; ES = 0.77; unclear) were moderately greater with active recovery compared with passive recovery across sprints. Summed CODD time (0.87 [1.01] s; P = .07; ES = 0.76, moderate; likely) and CODD decrement (8.1% [3.7%]; P < .01; ES = 1.94, large; almost certainly) were higher with active compared with passive recovery. Trivial–small differences were evident for rating of perceived exertion (P = .516; ES = 0.19; unclear) and posttest blood lactate concentration (P = .29; ES = 0.40; unclear) between recovery modes. Conclusions: Passive recovery between repeated-change-of-direction sprints may reduce the physiological stress and fatigue encountered compared with active recovery in basketball players.

Madueno, Dalbo, and Scanlan are with Human Exercise and Training Laboratory, and Dalbo, Guy, Giamarelos, and Scanlan, the School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia. Spiteri is with the School of Health Sciences, University of Notre Dame, Fremantle, WA, Australia.

Madueno (maria.madueno@cqumail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Castagna C, Abt G, Manzi V, Annino G, Padua E, D’Ottavio S. Effect of recovery mode on repeated sprint ability in young basketball players. J Strength Cond Res. 2008;22(3):923929. PubMed ID: 18438220 doi:10.1519/JSC.0b013e31816a4281

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Zagatto A, Ardigò L, Barbieri F, et al. Performance and metabolic demand of a new repeated-sprint ability test in basketball players: does the number of changes of direction matter? J Strength Cond Res. 2017;31(9):24382446. PubMed ID: 28211843 doi:10.1519/JSC.0000000000001710

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41(8):673694. PubMed ID: 21780851 doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    McMahon S, Jenkins D. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med. 2002;32(12):761784. PubMed ID: 12238940 doi:10.2165/00007256-200232120-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Buchheit M, Cormie P, Abbiss C, Ahmaidi S, Nosaka K, Laursen P. Muscle deoxygenation during repeated sprint running: effect of active vs. passive recovery. Int J Sports Med. 2009;30(6):418425. PubMed ID: 19437381 doi:10.1055/s-0028-1105933

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Scanlan A, Madueno M. Passive recovery promotes superior performance and reduced physiological stress across different phases of short-distance repeated sprints. J Strength Cond Res. 2016;30(9):25402549. PubMed ID: 26808862 doi:10.1519/JSC.0000000000001339

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Menzies P, Menzies C, McIntyre L, Paterson P, Wilson J, Kemi O. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J Sports Sci. 2010;28(9):975982. PubMed ID: 20544484 doi:10.1080/02640414.2010.481721

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gladden L. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558(pt 1):530. PubMed ID: 15131240 doi:10.1113/jphysiol.2003.058701

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol. 2003;89(6):548554. PubMed ID: 12734760 doi:10.1007/s00421-003-0834-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Scanlan A, Dascombe B, Reaburn P. A comparison of the activity demands of elite and sub-elite Australian men’s basketball competition. J Sports Sci. 2011;29(11):11531160. PubMed ID: 21777151 doi:10.1080/02640414.2011.582509

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Buchheit M, Bishop D, Haydar B, Nakamura F, Ahmaidi S. Physiological responses to shuttle repeated-sprint running. Int J Sports Med. 2010;31(6):402409. PubMed ID: 20422503 doi:10.1055/s-0030-1249620

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Nimphius S, Callaghan S, Spiteri T, Lockie R. Change of direction deficit: a more isolated measure of change of direction performance than total 505 time. J Strength Cond Res. 2016;30(11):30243032. PubMed ID: 26982972 doi:10.1519/JSC.0000000000001421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sheppard J, Young W. Agility literature review: classifications, training and testing. J Sports Sci. 2006;24(9):919932. PubMed ID: 16882626 doi:10.1080/02640410500457109

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Czuba M, Zajak A, Maszcyk A, et al. The effects of high intensity interval training in normobaric hypoxia on aerobic capacity in basketball players. J Hum Kinet. 2013;39:103114. PubMed ID: 24511346 doi:10.2478/hukin-2013-0073

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Howley E, Basset D, Welch H. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):12921301. doi:10.1249/00005768-199509000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hopkins W. A scale of magnitudes for effect statistics. 2006. http://sportsci.org/resource/stats/effectmag.html. Accessed September 9, 2017.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Barber O, Thomas C, Jones P, McMahon J, Comfort P. Reliability of the 505 change-of-direction test in netball players. Int J Sports Physiol Perform. 2016;11(3):377380. PubMed ID: 26309330 doi:10.1123/ijspp.2015-0215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Coe R. Effect size calculator. 2000. https://www.cem.org/effect-size-calculator. Accessed September 9, 2017.

  • 20.

    Hopkins W. A spreadsheet to compare means of two groups. Sportscience. 2007;11:2223.

  • 21.

    Spencer M, Bishop D, Dawson D, Goodman C, Duffield R. Metabolism and performance in repeated cycle sprints: active versus passive recovery. Med Sci Sports Exerc. 2006;38:14921499. PubMed ID: 16888464 doi:10.1249/01.mss.0000228944.62776.a7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Achten J, Jeukendrup A. Heart rate monitoring: applications and limitations. Sports Med. 2003;33(7):517538. PubMed ID: 12762827 doi:10.2165/00007256-200333070-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Buchheit M, Haydar B, Ahmaidi S. Repeated sprints with directional changes: do angles matter? J Sports Sci. 2012;30(6):555562. PubMed ID: 22335343 doi:10.1080/02640414.2012.658079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Carey M, Conley K, Crowther G, Kemper W. Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am J Physiol Endocrinol Metab. 2002;282(1):6773. doi:10.1152/ajpendo.2002.282.1.E67

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Chen M, Fan X, Moe S. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. J Sports Sci. 2002;20(11):873899. PubMed ID: 12430990 doi:10.1080/026404102320761787

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Spiteri T, Newton R, Binetti M, Hart N, Sheppard J, Nimphius S. Mechanical determinants of faster change of direction and agility performance in female basketball athletes. J Strength Cond Res. 2015;29(8):22052214. PubMed ID: 25734779 doi:10.1519/JSC.0000000000000876

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Spiteri T, Cochrane J, Hart N, Haff G, Nimphius S. Effect of strength on plant foot kinetics and kinematics during a change of direction task. Eur J Sport Sci. 2013;13(6):646652. PubMed ID: 24251742 doi:10.1080/17461391.2013.774053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Greig M, Siegler J. Soccer-specific fatigue and eccentric hamstrings muscle strength. J Athl Train. 2009;44(2):180184. PubMed ID: 19295963 doi:10.4085/1062-6050-44.2.180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Spiteri T, Newton R, Nimphius S. Neuromuscular strategies contributing to faster multidirectional agility performance. J Electromyogr Kinesiol. 2015;25(4):629636. PubMed ID: 25956548 doi:10.1016/j.jelekin.2015.04.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Padulo J, Attene G, Migliaccio G, Cuzzolin F, Vando S, Ardigò L. Metabolic optimisation of the basketball free throw. J Sports Sci. 2014;33(14):14541458. PubMed ID: 25529051 doi:10.1080/02640414.2014.990494

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3746 884 16
Full Text Views 93 18 0
PDF Downloads 79 28 0