The Use of Microtechnology to Monitor Collision Performance in Professional Rugby Union

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To determine if microtechnology-derived collision loads discriminate between collision performance and compare the physical and analytical components of collision performance between positional groups. Methods: Thirty-seven professional male rugby union players participated in this study. Collision events from 11 competitive matches were coded using specific tackle and carry classifications based on the ball-carrier’s collision outcome. Collisions were automatically detected using 10 Hz microtechnology units. Collision events were identified, coded (as tackle or carry), and timestamped at the collision contact point using game analysis software. Attacking and defensive performances of 1609 collision events were analyzed. Results: Collision loads were significantly greater during dominant compared with neutral and passive collisions (P < .001; effect size [ES] = 0.53 and 0.80, respectively), tackles (P < .0001; ES = 0.60 and 0.56, respectively), and carries (P < .001; ES = 0.48 and 0.79, respectively). Overall, forwards reported a greater number and frequency of collisions but lower loads per collision and velocities at collision point than did backs. Microtechnology devices can also accurately, sensitively, and specifically identify collision events (93.3%, 93.8%, and 92.8%, respectively). Conclusion: Microtechnology is a valid means of discriminating between tackle and carry performance. Thus, microtechnology-derived collision load data can be utilized to track and monitor collision events in training and games.

MacLeod and Egaña are with the Dept of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland. MacLeod, Hagan, Davis, and Drake are with Ulster Rugby, Kingspan Stadium, Belfast, United Kingdom.

MacLeod (macleos@tcd.ie) is corresponding author.
  • 1.

    Till K, Tester E, Jones B, Emmonds S, Fahey J, Cooke C. Anthropometric and physical characteristics of English rugby academy rugby league players. J Strength Cond Res. 2013;28:319–327. doi:10.1519/JSC.0b013e3182a73c0e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Impellizzeri FM, Rampinini E, Marcora SM. Physiological assessment of aerobic training in soccer. J Sports Sci. 2005;23:583–592. PubMed ID: 16195007 doi:10.1080/02640410400021278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mujika I. Quantification of training and completion loads in endurance sports: methods and applications. Int J Sports Physiol Perf. 2017;12:2–9. doi:10.1123/ijspp.2016-0095

    • Search Google Scholar
    • Export Citation
  • 4.

    Gabbett TJ. Quantifying the physical demands of collision sports does microsensor technology measure what it claims to measure? J Strength Cond Res. 2013;27:2319–2322. PubMed ID: 23090320 doi:10.1519/JSC.0b013e318277fd21

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Johnston R, Watsford M, Kelly S, Pine M, Spurrs R. Validity and interunit reliability of 10 Hz and 15 Hz GPS units for assessing athlete movement demands. J Strength Cond Res. 2014;28:1649–1655. PubMed ID: 24276300 doi:10.1519/JSC.0000000000000323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Beato M, Bartolini D, Ghia G, Zamparo P. Accuracy of a 10 Hz GPS unit in measuring shuttle velocity performed at different speeds and distances (5–20 m). J Hum Kinet. 2016;54:15–22. PubMed ID: 28031753 doi:10.1515/hukin-2016-0031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Johnston RD, Gabbett TJ, Seibold AJ, Jenkins DG. Influence of physical contact on neuromuscular fatigue and markers of muscle damage following small-sided games. J Sci Med Sport. 2014;17:535–540. PubMed ID: 23981503 doi:10.1016/j.jsams.2013.07.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Brooks J, Fuller C, Kemp S, Reddin D. A prospective study of injuries and training amongst the England 2003 Rugby World Cup squad. Br J Sports Med. 2005;39:288–293. PubMed ID: 15849293 doi:10.1136/bjsm.2004.013391

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Reardon C, Tobin D, Tierney P, Delahunt E. Collision count in rugby union: a comparison of micro-technology and video analysis methods. J Sport Sci. 2017;35(20):2028–2034. doi:10.1080/02640414.2016.1252051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hendricks S, Karpul D, Nicolls F, Lambert M. Velocity and acceleration before contact in the tackle during rugby union matches. J Sport Sci. 2012;30:1215–1224. doi:10.1080/02640414.2012.707328

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Hendricks S, Karpul D, Lambert M. Momentum and kinetic energy before the tackle in rugby union. J Sport Sci Med. 2014;13:557.

  • 12.

    Cunniffe B, Proctor W, Baker JS, Davies B. An evaluation of the physiological demands of elite rugby union using global positioning system tracking software. J Strength Cond Res. 2009;23:1195–1203. PubMed ID: 19528840 doi:10.1519/JSC.0b013e3181a3928b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Coughlan GF, Green BS, Pook PT, Toolan E, O’Connor SP. Physical game demands in elite rugby union, a global positioning system analysis and possible implications for rehabilitation. J Orthop Sports Phys Ther. 2011;41:600–605. doi:10.2519/jospt.2011.3508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cummins C, Orr R. Analysis of physical collisions in elite national rugby league match play. Int J Sports Physiol Perform. 2015;10:732–739. PubMed ID: 25945899 doi:10.1123/ijspp.2014-0541

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Buchheit M, Al Haddad H, Simpson BM, et al. Monitoring accelerations with GPS in football: time to slow down. Int J Sports Physiol Perform. 2014;9:442–445. PubMed ID: 23916989 doi:10.1123/ijspp.2013-0187

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McNamara DJ, Gabbett T, Chapman P, Naughton G, Farhart P. The validity of microsensors to automatically detect bowling events and counts in cricket fast bowlers. Int J Sports Physiol Perform. 2015;10:71–75. PubMed ID: 24911322 doi:10.1123/ijspp.2014-0062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37:360–363. PubMed ID: 15883903

  • 18.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30:1–15. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet. 1986;327:307–310. doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG. A scale of magnitudes for effect statistics. A new view of statistics. 2002. www.sportsci.org/resource/stats/effectmag.html.

    • Export Citation
  • 21.

    Hopkins WG. How to interpret changes in an athletic performance test. Sports Sci. 2004;8:1–7.

  • 22.

    Haugen T, Buchheit M. Sprint running performance monitoring: methodological and practical considerations. Sports Med. 2016;46:641–656. PubMed ID: 26660758 doi:10.1007/s40279-015-0446-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sinclair J, Bottom L, Taylor K, Greenhalgh A. Tibial shock measured during the fencing lunge: the influence of footwear. Sports Biomech. 2010;9:65–71. PubMed ID: 20806842 doi:10.1080/14763141.2010.491161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wong WY, Wong MS. Detecting spinal posture change in sitting positions with tri-axial accelerometers. Gait Posture. 2008;27:168–171. PubMed ID: 17419060 doi:10.1016/j.gaitpost.2007.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gabbett TJ, Jenkins DG, Abernethy B. Correlates of tackling ability in high-performance rugby league players. J Strength Cond Res. 2011;25:72–79. PubMed ID: 21157385 doi:10.1519/JSC.0b013e3181ff506f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Gabbett T, Ryan P. Tackling technique, injury prevention, and playing performance in high-performance collision sport athletes. Int J Sports Sci Coach. 2009;4:521–533. doi:10.1260/174795409790291402

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Quarrie K, Hopkins W, Anthony M, Gill N. Positional demands of international rugby union evaluation of player actions and movements. J Sci Med Sport. 2013;16,353–359. PubMed ID: 22975233 doi:10.1016/j.jsams.2012.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Usman J, McIntosh AS, Fréchède B. An analysis of impact forces in an active shoulder tackle in rugby. Br J Sports Med. 2011;45:328–329. doi:10.1136/bjsm.2011.084038.53

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    McLaren SJ, Weston M, Smith A, Cramb R, Portas MD. Variability of physical performance and player match loads in professional rugby union. J Sport Sci Med. 2016;19:493–497. doi:10.1016/j.jsams.2015.05.010

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 103 103 17
Full Text Views 5 5 2
PDF Downloads 3 3 0