Impact of Energy Availability, Health, and Sex on Hemoglobin-Mass Responses Following Live-High–Train-High Altitude Training in Elite Female and Male Distance Athletes

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: The authors investigated the effects of sex, energy availability (EA), and health status on the change in hemoglobin mass (ΔHbmass) in elite endurance athletes over ∼3–4 wk of live-high–train-high altitude training in Flagstaff, AZ (2135 m; n = 27 women; n = 21 men; 27% 2016 Olympians). Methods: Precamp and postcamp Hbmass (optimized carbon monoxide rebreathing method) and iron status were measured, EA was estimated via food and training logs, and a Low Energy Availability in Females Questionnaire (LEAFQ) and a general injury/illness questionnaire were completed. Hypoxic exposure (h) was calculated with low (<500 h), moderate (500–600 h), and high (>600 h) groupings. Results: Absolute and relative percentage ΔHbmass was significantly greater in women (6.2% [4.0%], P < .001) than men (3.2% [3.3%], P = .008). %ΔHbmass showed a dose–response with hypoxic exposure (3.1% [3.8%] vs 4.9% [3.8%] vs 6.8% [3.7%], P = .013). Hbmasspre was significantly higher in eumenorrheic vs amenorrheic women (12.2 [1.0] vs 11.3 [0.5] g/kg, P = .004). Although statistically underpowered, %ΔHbmass was significantly less in sick (n = 4, −0.5% [0.4%]) vs healthy (n = 44, 5.4% [3.8%], P < .001) athletes. There were no significant correlations between self-reported iron intake, sex hormones, or EA on Hbmass outcomes. However, there was a trend for a negative correlation between LEAFQ score and %ΔHbmass (r = −.353, P = .07). Conclusions: The findings confirm the importance of baseline Hbmass and exposure to hypoxia on increases in Hbmass during altitude training, while emphasizing the importance of athlete health and indices of EA on an optimal baseline Hbmass and hematological response to hypoxia.

Heikura and Burke are with the Mary MacKillop Inst for Health Research, Australian Catholic University, Melbourne, Australia, and Sports Nutrition, Australian Inst of Sport, Canberra, Australia. Bergland is with HYPO2 High Performance Sport Center, Flagstaff, AZ. Uusitalo is with the Dept of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center, Helsinki, Finland, and the University of Central Hospital and University of Helsinki, Helsinki, Finland. Mero is with the Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland. Stellingwerff is with Canadian Sport Inst Pacific, Victoria, Canada.

Heikura (ida.heikura@myacu.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Lundby CRobach P. Does ‘altitude training’ increase exercise performance in elite athletes? Exp Physiol. 2016;101(7):783788. PubMed ID: 27173805 doi:10.1113/EP085579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Millet GPRoels BSchmitt LWoorons XRichalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):125. PubMed ID: 20020784 doi:10.2165/11317920-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Garvican LMartin DQuod MStephens BSassi AGore C. Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists. Scand J Med Sci Sports. 2012;22(1):95103. PubMed ID: 20561279 doi:10.1111/j.1600-0838.2010.01145.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pottgiesser TGarvican LAMartin DTFeatonby JMGore CJSchumacher YO. Short-term hematological effects upon completion of a four-week simulated altitude camp. Int J Sports Physiol Perform. 2012;7(1):7983. PubMed ID: 21941010 doi:10.1123/ijspp.7.1.79

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wehrlin JPZuest PHallen JMarti B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol (1985). 2006;100(6):19381945. PubMed ID: 16497842 doi:10.1152/japplphysiol.01284.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wachsmuth NBVolzke CPrommer Net al. The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physiol. 2013;113(5):11991211. PubMed ID: 23138148 doi:10.1007/s00421-012-2536-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Garvican-Lewis LAHalliday IAbbiss CRSaunders PUGore CJ. Altitude exposure at 1800 m increases haemoglobin mass in distance runners. J Sports Sci Med. 2015;14(2):413417. PubMed ID: 25983592

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Garvican-Lewis LASharpe KGore CJ. Time for a new metric for hypoxic dose? J Appl Physiol (1985). 2016;121(1):352355. PubMed ID: 26917695 doi:10.1152/japplphysiol.00579.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Rasmussen PSiebenmann CDiaz VLundby C. Red cell volume expansion at altitude: a meta-analysis and Monte Carlo simulation. Med Sci Sports Exerc. 2013;45(9):17671772. PubMed ID: 23502972 doi:10.1249/MSS.0b013e31829047e5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Clark SAQuod MJClark MAMartin DTSaunders PUGore CJ. Time course of haemoglobin mass during 21 days live high-train low simulated altitude. Eur J Appl Physiol. 2009;106(3):399406. PubMed ID: 19294411 doi:10.1007/s00421-009-1027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Govus ADGarvican-Lewis LAAbbiss CRPeeling PGore CJ. Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS ONE. 2015;10(8):0135120. PubMed ID: 26263553 doi:10.1371/journal.pone.0135120

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Garvican-Lewis LAGovus ADPeeling PAbbiss CRGore CJ. Iron supplementation and altitude: decision making using a regression tree. J Sports Sci Med. 2016;15(1):204205. PubMed ID: 26957944

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gough CESharpe KGarvican LAAnson JMSaunders PUGore CJ. The effects of injury and illness on haemoglobin mass. Int J Sports Med. 2013;34(9):763769. PubMed ID: 23444086 doi:10.1055/s-0033-1333692

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Loucks ABKiens BWright HH. Energy availability in athletes. J Sports Sci. 2011;29(suppl 1):S715. PubMed ID: 21793767 doi:10.1080/02640414.2011.588958

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mountjoy MSundgot-Borgen JBurke Let al. The IOC consensus statement: beyond the female athlete Triad—Relative energy deficiency in sport (RED-S). Br J Sports Med. 2014;48(7):491497. PubMed ID: 24620037 doi:10.1136/bjsports-2014-093502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Heinicke KHeinicke ISchmidt WWolfarth B. A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. Int J Sports Med. 2005;26(5):350355. PubMed ID: 15895317 doi:10.1055/s-2004-821052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Garvican LAPottgiesser TMartin DTSchumacher YOBarras MGore CJ. The contribution of haemoglobin mass to increases in cycling performance induced by simulated LHTL. Eur J Appl Physiol. 2011;111(6):10891101. PubMed ID: 21113616 doi:10.1007/s00421-010-1732-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gore CJHahn ARice Aet al. Altitude training at 2690 m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists. J Sci Med Sport. 1998;1(3):156170. PubMed ID: 9783517 doi:10.1016/S1440-2440(98)80011-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pottgiesser TAhlgrim CRuthardt SDickhuth HHSchumacher YO. Hemoglobin mass after 21 days of conventional altitude training at 1816 m. J Sci Med Sport. 2009;12(6):673675. PubMed ID: 18768367 doi:10.1016/j.jsams.2008.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Robach PLundby C. Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports. 2012;22(3):303305. PubMed ID: 22612361 doi:10.1111/j.1600-0838.2012.01457.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Gore CJClark SASaunders PU. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc. 2007;39(9):16001609. PubMed ID: 17805094 doi:10.1249/mss.0b013e3180de49d3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Spiriev BSpiriev A. IAAF scoring tables 2011. https://www.iaaf.org/about-iaaf/documents/technical. Accessed January 312016.

    • Export Citation
  • 23.

    Melin ATornberg ABSkouby Set al. The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med. 2014;48(7):540545. PubMed ID: 24563388 doi:10.1136/bjsports-2013-093240

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Schmidt WPrommer N. The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol. 2005;95(5–6):486495. PubMed ID: 16222540 doi:10.1007/s00421-005-0050-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):11641168. PubMed ID: 9662690 doi:10.1097/00005768-199807000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Seiler KSKjerland GO. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16(1):4956. PubMed ID: 16430681 doi:10.1111/j.1600-0838.2004.00418.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Heikura IAUusitalo ALTStellingwerff TBergland DMero AABurke LM. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int J Sport Nutr Exerc Metab. 2017;18:130. PubMed ID: 29252050 doi:10.1123/ijsnem.2017-0313

    • Search Google Scholar
    • Export Citation
  • 28.

    Rodriguez FAIglesias XFeriche Bet al. Altitude training in elite swimmers for sea level performance (altitude project). Med Sci Sports Exerc. 2015;47(9):19651978. PubMed ID: 25628173 doi:10.1249/MSS.0000000000000626

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Woods ALGarvican-Lewis LARice AThompson KG. 12 days of altitude exposure at 1800 M does not increase resting metabolic rate in elite rowers. Appl Physiol Nutr Metab. 2017;42(6):672676. PubMed ID: 28278387 doi:10.1139/apnm-2016-0693

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Stray-Gundersen JChapman RFLevine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol (1985). 2001;91(3):11131120. PubMed ID: 11509506 doi:10.1152/jappl.2001.91.3.1113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Chapman RFKarlsen TResaland GKet al. Defining the “dose” of altitude training: how high to live for optimal sea level performance enhancement. J Appl Physiol (1985). 2014;116(6):595603. doi:10.1152/japplphysiol.00634.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sharma APSaunders PUGarvican-Lewis LAet al. The effect of training at 2100-m altitude on running speed and session rating of perceived exertion at different intensities in elite middle-distance runners. Int J Sports Physiol Perform. 2017;12(suppl 2):S2147S2152. PubMed ID: 27736249 doi:10.1123/ijspp.2016-0402

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Sperlich BAchtzehn Sde Marees Mvon Papen HMester J. Load management in elite German distance runners during 3-weeks of high-altitude training. Physiol Rep. 2016;4(12):e12845. PubMed ID: 27356568 doi:10.14814/phy2.12845

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hauser ATroesch SSteiner Tet al. Do male athletes with already high initial haemoglobin mass benefit from ‘live high-train low’ altitude training? Exp Physiol. 2018;103(1):6876. PubMed ID: 29024137 doi:10.1113/EP086590

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Woods ALSharma APGarvican-Lewis LASaunders PURice AJThompson KG. Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. Int J Sport Nutr Exerc Metab. 2017;27(1):8390. PubMed ID: 27459673 doi:10.1123/ijsnem.2016-0116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gough CESaunders PUFowlie Jet al. Influence of altitude training modality on performance and total haemoglobin mass in elite swimmers. Eur J Appl Physiol. 2012;112(9):32753285. PubMed ID: 22234397 doi:10.1007/s00421-011-2291-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Garvican-Lewis LASchumacher YOClark SAet al. Stage racing at altitude induces hemodilution despite an increase in hemoglobin mass. J Appl Physiol (1985). 2014;117(5):463472. PubMed ID: 24994887 doi:10.1152/japplphysiol.00242.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    McLean BDButtifant DGore CJWhite KKemp J. Year-to-year variability in haemoglobin mass response to two altitude training camps. Br J Sports Med. 2013;47(suppl 1):i51i58. PubMed ID: 24282208 doi:10.1136/bjsports-2013-092744

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Gore CJSharpe KGarvican-Lewis LAet al. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med. 2013;47(suppl 1):i31i39. PubMed ID: 24282204 doi:10.1136/bjsports-2013-092840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Areta JLBurke LMCamera DMet al. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Endocrinol Metab. 2014;306(8):E989E997. PubMed ID: 24595305 doi:10.1152/ajpendo.00590.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Heikura IABurke LMMero AAUusitalo ALTStellingwerff T. Dietary microperiodization in elite female and male runners and race walkers during a block of high intensity precompetition training. Int J Sport Nutr Exerc Metab. 2017;27(4):297304. PubMed ID: 28387576. doi:10.1123/ijsnem.2016-0317

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Heikura IAStellingwerff TMero AAUusitalo ALTBurke LM. A mismatch between athlete practice and current sports nutrition guidelines among elite female and male middle- and long-distance athletes. Int J Sport Nutr Exerc Metab. 2017;27(4):351360. PubMed ID: 28338358. doi:10.1123/ijsnem.2016-0316

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 125 125 44
Full Text Views 20 20 4
PDF Downloads 8 8 5
Altmetric Badge
PubMed
Google Scholar