Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Enhanced external counterpulsation (EECP) is a recovery strategy whose use has increased in recent years owing to the benefits observed in the clinical setting in some cardiovascular diseases (ie, improvement of cardiovascular function). However, its claimed effectiveness for the enhancement of exercise recovery has not been analyzed in athletes. The aim of this study was to determine the effectiveness of EECP on short-term recovery after a fatiguing exercise bout. Methods: Twelve elite junior triathletes (16 [2] y) participated in this crossover counterbalanced study. After a high-intensity interval training session (6 bouts of 3-min duration at maximal intensity interspersed with 3-min rest periods), participants were assigned to recover during 30 min with EECP (80 mm Hg) or sham (0 mm Hg). Measures of recovery included performance (jump height and mean power during an 8-min time trial), metabolic (blood lactate concentration at several time points), autonomic (heart-rate variability at several time points), and subjective (rating of perceived exertion [RPE] and readiness to compete) outcomes. Results: There were no differences between EECP and sham in mean RPE or power output during the high-intensity interval training session, which elicited a significant performance impairment, vagal withdrawal, and increased blood lactate and RPE in both EECP and sham conditions (all P < .05). No significant differences were found in performance, metabolic, or subjective outcomes between conditions at any time point. A significantly lower high-frequency power (P < .05, effect size = 1.06), a marker of parasympathetic activity, was observed with EECP at the end of the recovery phase. Conclusion: EECP did not enhance short-term recovery after a high-intensity interval training session in healthy, highly trained individuals.

Valenzuela and de la Villa are with the Physiology Unit, Systems Biology Dept, School of Medicine, University of Alcalá, Madrid, Spain. Valenzuela, Sánchez-Martínez, Torrontegi, and Montalvo are with the Dept of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD). Lucia is with Faculty of Sport Sciences, European University of Madrid, and Research Inst ‘i+12,’ Madrid, Spain.

Valenzuela (pedrol.valenzuela@edu.uah.es) is corresponding author.
  • 1.

    Bishop PA, Jones E, Woods AK. Recovery from training: a brief review. J Strength Cond Res. 2008;22(3):10151024. PubMed ID: 18438210 doi:10.1519/JSC.0b013e31816eb518

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Barnett A. Using recovery modalities between training sessions in elite athletes does it help? Sport Med. 2006;36(9):781796. doi:10.2165/00007256-200636090-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Reilly T, Ekblom B. The use of recovery methods post-exercise. J Sports Sci. 2005;23(6):619627. PubMed ID: 16195010 doi:10.1080/02640410400021302

  • 4.

    Signorile JF, Ingalls C, Tremblay LM. The effects of active and passive recovery on short-term, high intensity power output. Can J Appl Physiol. 1993;18(1):3142. PubMed ID: 8471992 doi:10.1139/h93-004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Connolly DAJ, Brennan KM, Lauzon CD. Effects of active versus passive recovery on power output during repeated bouts of short term, high intensity exercise. J Sport Sci Med. 2003;2(2):4751.

    • Search Google Scholar
    • Export Citation
  • 6.

    Shea ML, Conti CR, Arora RR. An update on enhanced external counterpulsation. Clin Cardiol. 2005;28:115118. doi:10.1002/clc.4960280304

  • 7.

    Sharma U, Ramsey HK, Tak T. The role of enhanced external counter pulsation therapy in clinical practice. Clin Med Res. 2013;11(4):226232. PubMed ID: 24510321 doi:10.3121/cmr.2013.1169

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Beck DT, Martin JS, Casey DP, Avery JC, Sardina PD. Enhanced external counterpulsation improves endothelial function and exercise capacity in patients with ischaemic left ventricular dysfunction. Clin Exp Pharmacol Physiol. 2014;41:628636. PubMed ID: 24862172 doi:10.1111/1440-1681.12263

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Masuda D, Nohara R, Hirai T, et al. Enhanced external counterpulsation improved myocardial perfusion and coronary flow reserve in patients with chronic stable angina N-ammonia positron emission tomography. Eur Heart J. 2001;22(16):14511458. PubMed ID: 11482918 doi:10.1053/euhj.2000.2545

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bonetti PO, Barsness GW, Keelan PC, et al. Enhanced external counterpulsation improves endothelial function in patients with symptomatic coronary artery disease. J Am Coll Cardiol. 2003;41(10):17611768. doi:10.1016/S0735-1097(03)00329-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Akhtar M, Wu G, Du Z, Zheng Z, Michaels AD. Effect of external counterpulsation on plasma nitric oxide and endothelin-1 levels. Am J Cardiol. 2006;98(1):2830. PubMed ID: 16784915 doi:10.1016/j.amjcard.2006.01.053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Allen D, Lamb G, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287332. PubMed ID: 18195089 doi:10.1152/physrev.00015.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558(1):530. doi:10.1113/jphysiol.2003.058701

  • 14.

    Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004;287(3):502516. doi:10.1152/ajpregu.00114.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Finsterer J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord. 2012;13(1):218231. doi:10.1186/1471-2474-13-218

  • 16.

    Piras A, Gatta G. Evaluation of the effectiveness of compression garments on autonomic nervous system recovery following exercise. J Strength Cond Res. 2017;31(8):16361643. doi:10.1519/JSC.0000000000001621

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sport Exerc. 2011;43(9):17251734. doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Klika RJ, Alderdice MS, Kvale JJ, Kearmey JT. Efficacy of cycling training based on a power field test. J Strength Cond Res. 2007; 21(1):265269. PubMed ID: 17313274 doi:10.1519/00124278-200702000-00047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins W, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Noakes TD. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sport. 2000;10(3):123145. doi:10.1034/j.1600-0838.2000.010003123.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Zelikovski A, Kaye CL, Fink G, Spitzer SA, Shapiro Y. The effects of the modified intermittent sequential pneumatic device (MISPD) on exercise performance following an exhaustive exercise bout. Br J Sport Med. 1993;27(4):255259. doi:10.1136/bjsm.27.4.255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wiener A, Mizrahi J, Verbitsky O. Enhancement of tibialis anterior recovery by intermittent sequential pneumatic compression of the legs. Basic Appl Myol. 2001;11(1):8790.

    • Search Google Scholar
    • Export Citation
  • 23.

    Northey JW, Rattray B, Argus CK, Etxebarria N, Driller MW. Vascular occlusion and sequential compression for recovery after resistance exercise. J Strength Cond Res. 2016;30(2):533539. PubMed ID: 26154154 doi:10.1519/JSC.0000000000001080

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Overmayer RG, Driller MW. Pneumatic compression fails to improve performance recovery in trained cyclists. Int J Sports Physiol Perform. 2017;5:121. doi:10.1123/ijspp.2017-0207

    • Search Google Scholar
    • Export Citation
  • 25.

    O’Donnell SO, Driller MW. The effect of intermittent sequential pneumatic compression on recovery between exercise bouts in well-trained triathletes. J Sci Cycl. 2016;4(3):1923.

    • Search Google Scholar
    • Export Citation
  • 26.

    Keith SL, Mclaughlin DJ, Anderson FA Jr, et al. Do graduated compression stockings and pneumatic boots have an additive effect on the peak velocity of venoud blood flow? Arch Surg. 1992;127(6):727730. PubMed ID: 1596175 doi:10.1001/archsurg.1992.01420060107016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Martin JS, Friedenreich ZD, Borges AR, Roberts MD. Acute effects of peristaltic pneumatic compression on repeated anaerobic exercise performance and blood lactate clearance. J Strength Cond Res. 2015;29(10):29002906. PubMed ID: 25756325 doi:10.1519/JSC.0000000000000928

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Beaven C, Cook CJ, Beaven CM, Cook CJ, Kilduff L, Drawer S. Intermittent lower-limb occlusion enhances recovery after strenuous exercise Intermittent lower-limb occlusion enhances recovery after strenuous exercise. Appl Physiol Nutr Metab. 2012;37(6):11321139. PubMed ID: 22970789 doi:10.1139/h2012-101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Weerapong P, Hume PA, Kolt GS. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sport Med. 2005;35(3):235256. doi:10.2165/00007256-200535030-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Brown F, Gissane C, Howatson G. Compression garments and recovery from exercise: a meta-analysis. Sport Med. 2017;47(11):22452267. doi:10.1007/s40279-017-0728-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Stuckey MI, Tordi N, Mourot L, et al. Autonomic recovery following sprint interval exercise. Scand J Med Sci Sport. 2012;22(6):756763. doi:10.1111/j.1600-0838.2011.01320.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Panissa VLG, Cal Abad CC, Julio UF, Andreato LV, Franchini E. High-intensity intermittent exercise and its effects on heart rate variability and subsequent strength performance. Front Physiol. 2016;7(81):17. doi:10.3389/fphys.2016.00081

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Rimaud D, Calmels P, Pichot V, Bethoux F, Roche F. Effects of compression stockings on sympathetic activity and heart rate variability in individuals with spinal cord injury. J Spinal Cord Med. 2012;35(2):8188. PubMed ID: 22333734 doi:10.1179/2045772311Y.0000000054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Garvin NM, Levine BD, Raven PB, Pawelczyk JA. Pneumatic antishock garment inflation activates the human sympathetic nervous system by abdominal compression. Exp Physiol. 2014;99(1):101110. PubMed ID: 24014806 doi:10.1113/expphysiol.2013.072447

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Rimaud D, Messonnier L, Castells J, Devillard X, Calmels P. Effects of compression stockings during exercise and recovery on blood lactate kinetics. Eur J Appl Physiol. 2010;110(2):425433. PubMed ID: 20512586 doi:10.1007/s00421-010-1503-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Pruscino CL, Halson S, Hargreaves M. Effects of compression garments on recovery following intermittent exercise. Eur J Appl Physiol. 2013;113(6):15851596. PubMed ID: 23314683 doi:10.1007/s00421-012-2576-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 269 269 19
Full Text Views 13 13 1
PDF Downloads 2 2 0