Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Ischemic preconditioning (IPC) was initially developed to protect the myocardium from ischemia through altered cardiocyte metabolism. Because of the observed effects on metabolism and oxygen kinetics, IPC gained interest as a potential ergogenic aid in sports. Limited research evaluating the effects of IPC on maximal short-duration activities has been performed, and of the existing literature, mixed outcomes resulting from intrasubject variation may have clouded the efficacy of this technique for enhancing sprint performance. Therefore, the current study employed a randomized repeated-measures crossover design with IPC, placebo (SHAM), and control conditions while using sprint-trained athletes (N = 18) to determine the effect of IPC (3 × 5-min occlusions, with 5-min reperfusion), concluding 15 min prior to maximal 10-s and 20-m sprinting. A visual analog scale was used in conjunction with the sprint trials to evaluate any possible placebo effect on performance. Despite a “significantly beneficial” perception of the IPC treatment compared with the SHAM trials (P < .001), no changes in sprint performance were observed after either the IPC or SHAM condition over 10 m (IPC Δ  < 0.01 [0.02] s, SHAM Δ  < 0.01 [0.02] s) or 20 m (IPC Δ = −0.01 [0.03] s, SHAM Δ < 0.01 [0.03] s) compared with control. Thus, an IPC protocol does not improve 10- or 20-m sprint performance in sprint-trained athletes.

The authors are with the Dept of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada.

Burr (burrj@uoguelph.ca) is corresponding author.
  • 1.

    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–1136. PubMed ID: 3769170 doi:10.1161/01.CIR.74.5.1124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Barcroft H, Millen JLE. The blood flow through muscle during sustained contraction. J Physiol. 1939;97:17–31. PubMed ID: 16995147 doi:10.1113/jphysiol.1939.sp003789

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Andreas M, Schmid AI, Keilani M, et al. Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial. J Cardiovasc Magn Reson. 2011;13(1):32. doi:10.1186/1532-429X-13-32

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Souza-Filho MVP, Loiola RT, Rocha EL, et al. Hind limb ischemic preconditioning induces an anti-inflammatory response by remote organs in rats. Braz J Med Biol Res. 2009;42(10):921–929. PubMed ID: 19738981 doi:10.1590/S0100-879X2009005000025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Paradis-Deschênes P, Joanisse DR, Billaut F. Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Appl Physiol Nutr Metab. 2016;41(9):938–944. doi:10.1139/apnm-2015-0561

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kido K, Suga T, Tanaka D, et al. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep. 2015;3(5):12395. PubMed ID: 25952936 doi:10.14814/phy2.12395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Cruz RS, Aguiar RA, Turnes T, Pereira KL, Caputo F. Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol. 2015;119(9):961–967. PubMed ID: 26359484 doi:10.1152/japplphysiol.00498.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bailey TG, Jones H, Gregson W, Atkinson G, Cable NT, Thijssen DHJ. Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc. 2012;44(11):2084–2089. PubMed ID: 22843115 doi:10.1249/MSS.0b013e318262cb17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Crisafulli A, Tangianu F, Tocco F, et al. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J Appl Physiol. 2011;111(2):530–536. PubMed ID: 21617078 doi:10.1152/japplphysiol.00266.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gibson N, Mahony B, Tracey C, Fawkner S, Murray AM. Effect of ischemic preconditioning on repeated sprint ability in team sport athletes. J Sports Sci. 2015;33(11):1182–1188. PubMed ID: 25517761 doi:10.1080/02640414.2014.988741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ferreira TN, Sabino-Carvalho JL, Lopes TR, et al. Ischemic preconditioning and repeated sprint swimming: a placebo and nocebo study. Med Sci Sports Exerc. 2016;48:1967–1975. doi:10.1249/MSS.0000000000000977

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lalonde F, Curnier D. Can anaerobic performance be improved by remote ischemic preconditioning? J Strength Cond Res. 2015;29(1):80–85. PubMed ID: 25068802 doi:10.1519/JSC.0000000000000609

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lintz JA, Dalio MB, Joviliano EE, Piccinato CE. Ischemic pre and postconditioning in skeletal muscle injury produced by ischemia and reperfusion in rats. Acta Cir Bras. 2013;28(6):441–446. PubMed ID: 23743682 doi:10.1590/S0102-86502013000600007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Weiss RG, de Albuquerque CP, Vandegaer K, Chacko VP, Gerstenblith G. Attenuated glycogenolysis reduces glycolytic catabolite accumulation during ischemia in preconditioned rat hearts. Circ Res. 1996;79(3):435–446. PubMed ID: 8781477 doi:10.1161/01.RES.79.3.435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gibson N, White J, Neish M, Murray A. Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. Int J Sport Physiol Perform. 2013;8(6):671–676. doi:10.1123/ijspp.8.6.671

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Patterson SD, Bezodis NE, Glaister M, Pattison JR. The effect of ischemic preconditioning on repeated sprint cycling performance. Med Sci Sports Exerc. 2014;13:1652–1658. doi:10.1249/MSS.0000000000000576

    • Search Google Scholar
    • Export Citation
  • 17.

    Sabino-Carvalho JLC, Lopes TR, Freitas TO, et al. Effect of ischemic preconditioning on endurance performance does not surpass placebo. Med Sci Sports Exerc. 2017;49:124–132. doi:10.1249/MSS.0000000000001088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Tocco F, Marongiu E, Ghiani G, et al. Muscle ischemic preconditioning does not improve performance during self-paced exercise. Int J Sports Med. 2015;36(1):9–15. PubMed ID: 25264861 doi:10.1055/s-0034-1384546

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Marocolo M, da Mota GR, Pelegrini V, Appell Coriolano HJ. Are the beneficial effects of ischemic preconditioning on performance partly a placebo effect? Int J Sports Med. 2015;36(10):822–825. PubMed ID: 26058479 doi:10.1055/s-0035-1549857

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Incognito AV, Burr JF, Millar PJ. The effects of ischemic preconditioning on human exercise performance. Sports Med. 2016;46(4):531–544. doi:10.1007/s40279-015-0433-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bergkvist C, Svensson M, Eriksrud O. Accuracy and repeatability of force, position and speed measurement of 1080 Quantum and 1080 Sprint. Stockholm, Sweden: 1080 Motion; 2015.

    • Search Google Scholar
    • Export Citation
  • 23.

    Batterham AM, Hopkins WG. Commentary on making meaningful inferences about magnitudes. Sportscience. 2005;9:43–44.

  • 24.

    Buchheit M. The numbers will love you back in return—I promise. Int J Sport Physiol Perform. 2016;11(4):551–554. doi:10.1123/ijspp.2016-0214

  • 25.

    Lisbôa FD, Turnes T, Cruz RSO, Raimundo JAG, Pereira GS, Caputo F. The time dependence of the effect of ischemic preconditioning on successive sprint swimming performance. J Sci Med Sport. 2016;20(5):507–511. doi:10.1016/j.jsams.2016.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lindsay A, Petersen C, Blackwell G, et al. The effect of 1 week of repeated ischaemic leg preconditioning on simulated Keirin cycling performance: a randomised trial. BMJ Open Sport Exerc Med. 2017;3(1):e000229. PubMed ID: 28761713 doi:10.1136/bmjsem-2017-000229

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 86 86 23
Full Text Views 9 9 2
PDF Downloads 9 9 3