The Effect of Periodization and Training Intensity Distribution on Middle- and Long-Distance Running Performance: A Systematic Review

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Mark Kenneally
Search for other papers by Mark Kenneally in
Current site
Google Scholar
PubMed
Close
,
Arturo Casado
Search for other papers by Arturo Casado in
Current site
Google Scholar
PubMed
Close
, and
Jordan Santos-Concejero
Search for other papers by Jordan Santos-Concejero in
Current site
Google Scholar
PubMed
Close
Restricted access

This review aimed to examine the current evidence for 3 primary training intensity distribution types: (1) pyramidal training, (2) polarized training, and (3) threshold training. Where possible, the training intensity zones relative to the goal race pace, rather than physiological or subjective variables, were calculated. Three electronic databases (PubMed, Scopus, and Web of Science) were searched in May 2017 for original research articles. After analysis of 493 resultant original articles, studies were included if they met the following criteria: (1) Their participants were middle- or long-distance runners; (2) they analyzed training intensity distribution in the form of observational reports, case studies, or interventions; (3) they were published in peer-reviewed journals; and (4) they analyzed training programs with a duration of 4 wk or longer. Sixteen studies met the inclusion criteria, which included 6 observational reports, 3 case studies, 6 interventions, and 1 review. According to the results of this analysis, pyramidal and polarized training are more effective than threshold training, although the latest is used by some of the best marathon runners in the world. Despite this apparent contradictory finding, this review presents evidence for the organization of training into zones based on a percentage of goal race pace, which allows for different periodization types to be compatible. This approach requires further development to assess whether specific percentages above and below race pace are key to inducing optimal changes.

Kenneally and Santos-Concejero are with the Dept of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain. Casado is with the Faculty of Health Sciences, Isabel I University, Burgos, Spain.

Santos-Concejero (jordan.santos@ehu.eus) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Seiler S, Tonnessen E. Intervals, threshold and long slow distance: the role of intensity and duration in endurance training. Sports Sci. 2009;13:3253.

    • Search Google Scholar
    • Export Citation
  • 2.

    Seiler S, Kjerland GO. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16:4956. PubMed ID: 16430681 doi:10.1111/j.1600-0838.2004.00418.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295. PubMed ID: 26578968 doi:10.3389/fphys.2015.00295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Enoksen E, Tjelta AR, Tjelta LI. Distribution of training volume and intensity of elite male and female track and marathon runners. Int J Sports Sci Coach. 2011;6: 273293. doi:10.1260/1747-9541.6.2.273

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Faulkner JA. New perspectives in training for maximum performance. JAMA. 1968;205:741746. PubMed ID: 5695282 doi:10.1001/jama.1968.03140370043009

  • 6.

    McLaughlin JE, Howley ET, Bassett DR, Thompson DL, Fitzhugh EC. Test of the classic model for predicting endurance running performance. Med Sci Sports Exerc. 2010; 42(5):991997. PubMed ID: 19997010 doi:10.1249/MSS.0b013e3181c0669d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sports Sci Rev. 1995;23:2563. PubMed ID: 7556353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Allen WK, Seals DR, Hurley BF, Ehsani AA, Hagberg JM. Lactate threshold and distance running performance in young and older endurance athletes. J Appl Physiol. 1985;58:12811284. PubMed ID: 3988681 doi:10.1152/jappl.1985.58.4.1281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc. 1980;12:357360. PubMed ID: 7453514 doi:10.1249/00005768-198025000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Stoggl TL, Sperlich B. Polarised training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014;5:33. PubMed ID: 24550842 doi:10.3389/fphys.2014.00033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5:276291. PubMed ID: 20861519 doi:10.1123/ijspp.5.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tjelta LI. The training of international level distance runners. Int J Sports Sci Coach. 2016;11:122134. doi:10.1177/1747954115624813

  • 13.

    Arcelli E, Canova R. Scientific training for the Marathon. Monte Carlo, Monaco: International Association of Athletics Federation; 1999.

    • Search Google Scholar
    • Export Citation
  • 14.

    Oxford Centre for Evidence-based Medicine. Levels of evidence. Oxford, UK: University of Oxford; 2009:45.

  • 15.

    de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55:129133. PubMed ID: 19463084 doi:10.1016/S0004-9514(09)70043-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 17.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Robinson DM, Robinson SM, Hume PA, Hopkins WG. Training intensity of elite male distance runners. Med Sci Sports Exerc. 1991;23:10781082. PubMed ID: 1943629 doi:10.1249/00005768-199109000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Billat V, Demarle A, Slawinski J, Paiva M, Koralsztein JP. Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc. 2001;33:20892097. PubMed ID: 11740304 doi:10.1097/00005768-200112000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Billat V, Lepretre PM, Heugas AM, Laurence MH, Salim D, Koralsztein JP. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc. 2003;35:297304. PubMed ID: 12569219 doi:10.1249/01.MSS.0000053556.59992.A9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Esteve-Lanao J, San Juan AF, Earnest CP, Foster C, Lucia A. How do endurance runners actually train? Relationship with competition performance. Med Sci Sports Exerc. 2005;37:496504. PubMed ID: 15741850 doi:10.1249/01.MSS.0000155393.78744.86

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Esteve-Lanao J, Foster C, Seiler S, Lucia A. Impact of training intensity distribution on performance in endurance athletes. J Strength Cond Res. 2007;21:943949. PubMed ID: 17685689 doi:10.1519/R-19725.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tjelta LI, Enoksen E. Training characteristics of male junior cross country and track runners on European top level. Int J Sports Sci Coach. 2010;5:193203. doi:10.1260/1747-9541.5.2.193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Stellingwerff T. Case study: nutrition and training periodization in three elite marathon runners. Int J Sport Nutr Exerc Metab. 2012;22:392400. PubMed ID: 23011657 doi:10.1123/ijsnem.22.5.392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Ingham S, Fudge BW, Pringle JS . Training distribution, physiological profile, and performance for a male international 1500m runner. Int J Sports Physiol Perform 2012;7:193195. PubMed ID: 22634971 doi:10.1123/ijspp.7.2.193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Tjelta LI. A longitudinal case study of the training of the 2012 European 1500 m track champion. Int J Appl Sports Sci. 2013;25:1118. doi:10.24985/ijass.2013.25.1.11

    • Search Google Scholar
    • Export Citation
  • 27.

    Muñoz I, Seiler S, Larumbe E, Esteve J, Larumbe E, Esteve-Lanao J. Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform. 2014;9:265272. PubMed ID: 23752040 doi:10.1123/ijspp.2012-0350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tjelta LI, Tonnessen E, Enoksen E. A case study of the training of nine times New York Marathon winner Grete Waitz. Int J Sports Sci Coach. 2014;9:139158. doi:10.1260/1747-9541.9.1.139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Clemente-Suarez VJ, Gonzalez-Rave JM. Four weeks of training with different aerobic workload distributions-effect on aerobic performance. Eur J Sports Sci. 2014;14:17. doi:10.1080/17461391.2011.635708

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Manzi V, Bovanzi A, Castagna C, Sinibaldi Salimei P, Volterrani M, Iellamo F. Training-load distribution in endurance runners: objective versus subjective assessment. Int J Sports Physiol Perform. 2015;10:10231028. PubMed ID: 25803237 doi:10.1123/ijspp.2014-0557

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Clemente-Suarez VJ, Dalamitros AA, Nikolaidis PT. The effect of a short-term training period on physiological parameters and running performance: intensity distribution versus constant-intensity exercise. J Sports Med Phys Fitness. 2016;58:17. PubMed ID: 27813393 doi:10.23736/S0022-4707.16.06756-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Mujika I. Quantification of training and competition loads in endurance sports: methods and applications. Int J Sports Physiol Perform. 2017;12:S29S217. PubMed ID: 27918666 doi:10.1123/ijspp.2016-0403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Weyand P, Cureton K, Conely D, Sloniger M. Percentage anaerobic energy utilized during track running events. Med Sci Sports Exerc. 1993;25:S105. doi:10.1249/00005768-199305001-00588

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Fiskerstrand A, Seiler S. Training and performance characteristics among Norwegian international rowers 1970–2001. Scand J Med Sci Sports. 2004;14:303310. PubMed ID: 15387804 doi:10.1046/j.1600-0838.2003.370.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Foster C, Rodriguez-Marroyo JA, de Koning JJ. Monitoring training loads: the past, the present, and the future. Int J Sports Physiol Perform. 2017;12:S22S28. PubMed ID: 28253038 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 18683 5722 371
Full Text Views 850 183 18
PDF Downloads 928 258 22