Positional Comparisons in the Impact of Fatigue on Movement Patterns in Hockey

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To examine the influence of the match period on the movement patterns of hockey players according to their playing positions under the introduction of quarters (QTRs). Methods: Sixteen subelite-level Spanish National League male hockey players participated in the study (age: 25.5 [2.9] y; body mass: 74.6 [5.5] kg). Global positioning system devices were used to monitor players’ running performance during 17 competitive matches (113 match-play profiles). Only players who played for at least 85% of the game were analyzed. Players were placed into 3 position categories: backs, midfielders, and forwards. Results: Moderate to large differences in relative total distance were found between midfielders and both backs and forwards in all QTRs (effect size [ES]: 0.4–1.2). ES for total distance was moderate for midfielders when compared with backs during the first QTR (moderate ES: 0.7). Midfielders and forwards covered more distance (m and m·min−1) in high-velocity zones than backs (ES: 0.6). Acceleration activities (n·min−1) at moderate and high intensities decreased in all groups across QTRs with moderate to very large ES (ES: 0.4–1.4). Relative sprinting distance decreased in backs (ES: 0.8). Backs had fewer repeated-sprint bouts (n and n·min−1) as the game progressed (ES: 1.0). Conclusions: During competitive match play, a degree of positional variation can be observed across QTRs. The relative distance and the number of accelerations and decelerations at moderate and high intensity decreased across QTRs. No between-QTRs differences in high-speed activity were reported.

Morencos is with Exercise and Sport Sciences, Education and Humanities Faculty, Francisco de Vitoria University, Madrid, Spain. Romero-Moraleda is with Healthy Sciences Faculty, Camilo José Cela University, Madrid, Spain, and the Laboratory of Exercise Physiology Research Group, Technical University of Madrid, Madrid, Spain. Castagna is with Fitness Training and Biomechanics Laboratory, Italian Football Association (FIGC), Technical Dept, Florence, Italy, and the University of Rome Tor Vergata, Rome, Italy. Casamichana is with the Center for Research and Industrial Technology of Cantabria, Santander, Spain.

Morencos (esther.morencos@ufv.es) is corresponding author.
  • 1.

    Scott M, Scott T, Kelly VG. The validity and reliability of global positioning systems in team sport: a brief review. J Strength Cond Res. 2016;30(5):14701490. PubMed ID: 26439776 doi:10.1519/JSC.0000000000001221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Spencer M, Rechichi C, Lawrence S, Dawson B, Bishop D, Goodman C. Time-motion analysis of elite field hockey during several games in succession: a tournament scenario. J Sci Med Sport. 2005;8(4):382391. PubMed ID: 16602166 doi:10.1016/S1440-2440(05)80053-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Waldron M, Highton J. Fatigue and pacing in high-intensity intermittent team sport: an update. Sports Med. 2014;44(12):16451658. PubMed ID: 25047854 doi:10.1007/s40279-014-0230-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Aughey RJ. Australian football player work rate: evidence of fatigue and pacing? Int J Sports Physiol Perform. 2010;5(3):394405. PubMed ID: 20861528 doi:10.1123/ijspp.5.3.394

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lythe J, Kilding A. Physical demands and physiological responses during elite field hockey. Int J Sports Med. 2011;32(7):523528. PubMed ID: 21563026 doi:10.1055/s-0031-1273710

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Tee JC, Lambert MI, Coopoo Y. Impact of fatigue on positional movements during professional Rugby Union match play. Int J Sports Physiol Perform. 2016;12(4):554561. PubMed ID: 27618472 doi:10.1123/ijspp.2015-0695

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Thompson K. Pacing: Individual Strategies for Optimal PerformanceChampaign, IL: Human Kinetics; 2014.

  • 8.

    Cummins C, Orr R, O’Connor H, West C. Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Med. 2013;43(10):10251042. PubMed ID: 23812857 doi:10.1007/s40279-013-0069-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    White AD, MacFarlane N. Time-on-pitch or full-game GPS analysis procedures for elite field hockey? Int J Sports Physiol Perform. 2013;8(5):549555. PubMed ID: 23412758 doi:10.1123/ijspp.8.5.549

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jennings DH, Cormack SJ, Coutts AJ, Aughey RJ. International field hockey players perform more high-speed running than national-level counterparts. J Strength Cond Res. 2012;26(4):947952. PubMed ID: 22446668 doi:10.1519/JSC.0b013e31822e5913

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lythe J, Kilding AE. The effect of substitution frequency on the physical and technical outputs of strikers during field hockey match play. Int J Perform Analysis Sport. 2013;13(3):848859. doi:10.1080/24748668.2013.11868693

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    FIH. Rules of Hockey Including Explanations. Lausanne, Switzerland: International Hockey Federation; 2014.

  • 13.

    Sunderland CD, Edwards PL. Activity profile and between-match variation in elite field hockey. J Strength Cond Res. 2017;31(3):758764. PubMed ID: 27359206 doi:10.1519/JSC.0000000000001522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McGuinness A, Malone S, Petrakos G, Collins K. The physical and physiological demands of elite international female field hockey players during competitive match-play [published online ahead of print, July 24, 2017]. J Strength Cond Res. PubMed ID: 28746245 doi:10.1519/JSC.0000000000002158

    • Search Google Scholar
    • Export Citation
  • 15.

    Macutkiewicz D, Sunderland C. The use of GPS to evaluate activity profiles of elite women hockey players during match-play. J Sports Sci. 2011;29(9):967973. PubMed ID: 21604228 doi:10.1080/02640414.2011.570774

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Winter EM, Maughan RJ. Requirements for ethics approvals. J Sports Sci. 2009;27:985985. PubMed ID: 19847681 doi:10.1080/02640410903178344

  • 17.

    White AD, MacFarlane NG. Analysis of international competition and training in men’s field hockey by global positioning system and inertial sensor technology. J Strength Cond Res. 2015;29(1):137143. PubMed ID: 24978837 doi:10.1519/JSC.0000000000000600

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sweeting AJ, Cormack SJ, Morgan S, Aughey RJ. When is a sprint a sprint? A review of the analysis of team-sport athlete activity profile. Front Physiol. 2017;8:432. PubMed ID: 28676767 doi:10.3389/fphys.2017.00432

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Akenhead R, Harley JA, Tweddle SP. Examining the external training load of an English premier league football team with special reference to acceleration. J Strength Cond Res. 2016;30(9):24242432. PubMed ID: 26817740 doi:10.1519/JSC.0000000000001343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Buchheit M, Simpson B, Mendez-Villanueva A. Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. Int J Sports Med. 2013;34(1):4048. PubMed ID: 22895872 doi:10.1055/s-0032-1316363

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hopkins WG. A scale of magnitudes for effect statistics: a new view of statistics. 2002. www.sportsci.org/resource/stats/effectmag.html

    • Export Citation
  • 22.

    Aughey RJ. Applications of GPS technologies to field sports. Int J Sports Physiol Perform. 2011;6(3):295310. PubMed ID: 21911856 doi:10.1123/ijspp.6.3.295

  • 23.

    MacLeod H, Bussell C, Sunderland C. Time-motion analysis of elite women’s field hockey, with particular reference to maximum intensity movement patterns. Int J Perform Analysis Sport. 2007;7(2):112. doi:10.1080/24748668.2007.11868392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Liu H, Zhao G, Gómez MA, Molinuevo JS, Giménez JV, Kang H. Time-motion analysis on Chinese male field hockey players. Int J Perform Analysis Sport. 2013;13(2):340352. doi:10.1080/24748668.2013.11868652

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Akenhead R, Hayes PR, Thompson KG, French D. Diminutions of acceleration and deceleration output during professional football match play. J Sci Med Sport. 2013;16(6):556561. PubMed ID: 23333009 doi:10.1016/j.jsams.2012.12.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Russell M, Sparkes W, Northeast J, et al. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J Strength Cond Res. 2016;30(10):28392844. PubMed ID: 25474342 doi:10.1519/JSC.0000000000000805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hodgson C, Akenhead R, Thomas K. Time-motion analysis of acceleration demands of 4v4 small-sided soccer games played on different pitch sizes. Hum Mov Sci. 2014;33:2532. PubMed ID: 24576705 doi:10.1016/j.humov.2013.12.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Polglaze T, Dawson B, Buttfield A, Peeling P. Metabolic power and energy expenditure in an international men’s hockey tournament. J Sports Sci. 2018;36(2):140148. PubMed ID: 28282747 doi:10.1080/02640414.2017.1287933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Núñez-Sánchez FJ, Toscano-Bendala FJ, Campos-Vázquez MA, Suarez-Arrones LJ. Individualized speed threshold to analyze the game running demands in soccer players using GPS technology (Umbral de velocidad individualizado para analizar en jugadores de fútbol mediante tecnología GPS las exigencias de sus desplazamientos en competición). Retos. 2017;(32):130133.

    • Search Google Scholar
    • Export Citation
  • 30.

    Gabbett TJ. Use of relative speed zones increases the high-speed running performed in team sport match play. J Strength Cond Res. 2015;29(12):33533359. PubMed ID: 26020710 doi:10.1519/JSC.0000000000001016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bradley PS, Noakes TD. Match running performance fluctuations in elite soccer: indicative of fatigue, pacing or situational influences? J Sports Sci. 2013;31(15):16271638. PubMed ID: 23808376 doi:10.1080/02640414.2013.796062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lovell R, Barrett S, Portas M, Weston M. Re-examination of the post half-time reduction in soccer work-rate. J Sci Med Sport. 2013;16(3):250254. PubMed ID: 22824313 doi:10.1016/j.jsams.2012.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 394 237 50
Full Text Views 9 3 0
PDF Downloads 17 9 0