The Same Story or a Unique Novel? Within-Participant Principal-Component Analysis of Measures of Training Load in Professional Rugby Union Skills Training

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To identify which combination metrics of external and internal training load (TL) capture similar or unique information for individual professional players during skills training in rugby union using principal-component (PC) analysis. Methods: TL data were collected from 21 male professional rugby union players across a competitive season. This included PlayerLoad™, total distance, and individualized high-speed distance (>61% maximal velocity; all external TL) obtained from a microtechnology device (OptimEye X4; Catapult Innovations, Melbourne, Australia) that was worn by each player and the session rating of perceived exertion (RPE) (internal TL). PC analysis was conducted on each individual to extract the underlying combinations of the 4 TL measures that best describe the total information (variance) provided by the measures. TL measures with PC loadings (PCL) above 0.7 were deemed to possess well-defined relationships with the extracted PC. Results: The findings show that from the 4 TL measures, the majority of an individual’s TL information (first PC: 55–70%) during skills training can be explained by session RPE (PCL: 0.72–0.95), total distance (PCL: 0.86–0.98), or PlayerLoad (PCL: 0.71–0.98). High-speed distance was the only variable to relate to the second PC (PCL: 0.72–1.00), which captured additional TL information (+19–28%). Conclusions: Findings suggest that practitioners could quantify the TL of rugby union skills training with one of PlayerLoad, total distance, or session RPE plus high-speed distance while limiting omitted information of the TL imposed during professional rugby union skills training.

The authors are with Leeds Beckett University, Leeds, United Kingdom. Weaving is also with Leeds Rhinos Rugby League; Dalton, Black, Phibbs, Jones, and Roe, Yorkshire Carnegie Rugby Union; and Jones, Rugby Football League, Leeds, United Kingdom. Darrall-Jones is also with Wasps Rugby Union, Coventry, United Kingdom.

Weaving (d.a.weaving@leedsbeckett.ac.uk) is corresponding author.
  • 1.

    McLaren SJ, Smith A, Spears IR, Weston M. A detailed quantification of differential ratings of perceived exertion during team-sport training. J Sci Med Sport. 2017;20(3):290295. PubMed ID: 27451269 doi:10.1016/j.jsams.2016.06.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Weaving D, Marshall P, Earle K, Nevill A, Abt G. Combining internal- and external-training-load measures in professional rugby league. Int J Sports Physiol Perform. 2014;9:905912. doi:10.1123/ijspp.2013-0444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273280. PubMed ID: 26758673 doi:10.1136/bjsports-2015-095788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hulin BT, Gabbett TJ, Lawson DW, Caputi P, Sampson JA. The acute:chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. Br J Sports Med. 2016;50:231236. PubMed ID: 26511006 doi:10.1136/bjsports-2015-094817

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Coutts AJ. In the age of technology, Occam’s razor still applies. Int J Sports Physiol Perform. 2014;9(5):741. PubMed ID: 25171538 doi:10.1123/ijspp.2014-0353

  • 6.

    Akenhead R, Nassis GP. Training load and player monitoring in high-level football: current practice and perceptions. Int J Sports Physiol Perform. 2016;11(5):587593. PubMed ID: 26456711 doi:10.1123/ijspp.2015-0331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15:109115. PubMed ID: 11708692

  • 8.

    Impellizzeri FM, Rampinini E, Marcora SM. Physiological assessment of aerobic training in soccer. J Sports Sci. 2005;23(6):583592. PubMed ID: 16195007 doi:10.1080/02640410400021278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Soligard T, Schwellnus M, Alonso JM, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):10301041. PubMed ID: 27535989 doi:10.1136/bjsports-2016-096581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Vanrenterghem J, Nedergaard NJ, Robinson MA, Drust B. Training load monitoring in team sports: a novel framework seperating physiological and biomechanical load-adaptation pathways. Sports Med. 2017;47(11):21352142. PubMed ID: 28283992 doi:10.1007/s40279-017-0714-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Carey DL, Blanch P, Ong KL, Crossley KM, Crow J, Morris ME. Training loads and injury risk in Australian football-differing acute: chronic workload ratios influence match injury risk. Br J Sports Med. 2017;51(16):12151220. PubMed ID: 27789430 doi:10.1136/bjsports-2016-096309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Oxendale CL, Twist C, Daniels M, Highton J. The relationship between match-play characteristics of elite rugby league and indirect markers of muscle damage. Int J Sports Physiol Perform. 2016;11(4):515521. PubMed ID: 26355239 doi:10.1123/ijspp.2015-0406

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Thorpe RT, Strudwick AJ, Buchheit M, Atkinson G, Drust B, Gregson W. The influence of changes in acute training load on daily sensitivity of morning-measured fatigue variables in elite soccer players. Int J Sports Physiol Perform. 2017;12(suppl 2):21072113. PubMed ID: 27918668 doi:10.1123/ijspp.2016-0433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Akubat I, Patel E, Barrett S, Abt G. Methods of monitoring the training and match load and their relationship to changes in fitness in professional youth soccer players. J Sports Sci. 2012;30(14):14731480. PubMed ID: 22857397 doi:10.1080/02640414.2012.712711

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Taylor RJ, Sanders D, Myers T, Abt G, Taylor CA, Akubat I. The dose–response relationship between training load and aerobic fitness in academy rugby union players. Int J Sports Physiol Perform. 2018;13:163169. doi:10.1123/ijspp.2017-0121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Graham SR, Cormack S, Parfitt G, Eston R. Relationships between model predicted and actual match performance in professional Australian footballers during an in-season training macrocycle. Int J Sports Physiol Perform. 2017;17:125.

    • Search Google Scholar
    • Export Citation
  • 17.

    Lazarus BH, Stewart AM, White KM, et al. Proposal of a global training load measure predicting match performance in an elite team sport. Front Physiol. 2017;8:930. PubMed ID: 29209229 doi:10.3389/fphys.2017.00930

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Robertson S, Bartlett JD, Gastin PB. Red, amber or green? Athlete monitoring in team sport: the need for decision-support systems. Int J Sports Physiol Perform. 2017;12(suppl 2):S273S279. doi:10.1123/ijspp.2016-0541

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    McLaren SJ, Macpherson TW, Coutts AJ, Hurst C, Spears IR, Weston M. The relationships between internal and external measures of training load and intensity in team sports: a meta-analysis. Sports Med. 2018;48(3):641658. PubMed ID: 29288436 doi:10.1007/s40279-017-0830-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kelly DM, Strudwick AJ, Atkinson G, Drust B, Gregson W. The within-participant correlation between perception of effort and heart rate-based estimations of training load in elite soccer players. J Sports Sci. 2016;34(14):13281332. PubMed ID: 26852624 doi:10.1080/02640414.2016.1142669

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Weaving D, Jones B, Marshall P, Till K, Abt G. Multiple measures are needed to quantify training loads in professional rugby league. Int J Sports Med. 2017;38(10):735740. PubMed ID: 28783849 doi:10.1055/s-0043-114007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lovell TW, Sirotic AC, Impellizzeri FM, Coutts AJ. Factors affecting perception of effort (session rating of perceived exertion) during rugby league training. Int J Sports Physiol Perform. 2013;8:6269. doi:10.1123/ijspp.8.1.62

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Williams S, Trewartha G, Cross MJ, Kemp SP, Stokes KA. Monitoring what matters: a systematic process for selecting training-load measures. Int J Sports Physiol Perform. 2017;12:S2-101S2-106. doi:10.1123/IJSPP.2015-0781

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Buchheit M, Al Haddad H, Simpson BM, et al. Monitoring accelerations with GPS in football: time to slow down? Int J Sports Physiol Perform. 2014;9:442445. PubMed ID: 23916989 doi:10.1123/ijspp.2013-0187

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Weaving D, Whitehead S, Till K, Jones B. The validity of real-time data generated by a wearable technology device. J Strength Cond Res. 2017;31(10):28762879. PubMed ID: 28700516 doi:10.1519/JSC.0000000000002127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Buchheit M, Mendez-Villanueva A, Simpson BM, Bourdon PC. Repeated-sprint sequences during youth soccer matches. Int J Sports Med. 2010;31:709716. PubMed ID: 20617485 doi:10.1055/s-0030-1261897

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Roe G, Darrall-Jones J, Black C, Shaw W, Till K, Jones B. Validity of 10-Hz GPS and timing gates for assessing maximum velocity in professional rugby union players. Int J Sports Physiol Perform. 2017;12:836839.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Murray NB, Gabbett TJ, Townshend AD. The use of relative speed zones in Australian football: are we really measuring what we think we are? Int J Sports Physiol Perform. 2018;13:442451. doi:10.1123/ijspp.2017-0148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Abt G, Lovell R. The use of individualised speed and intensity thresholds for determining the distance run at high-intensity in professional soccer. J Sports Sci. 2009;27(9):893898. PubMed ID: 19629838 doi:10.1080/02640410902998239

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hunter F, Bray J, Towlson C, et al. Individualisation of time–motion analysis: a method comparison and case report series. Int J Sports Med. 2015;36(1):4148. PubMed ID: 25259591

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Scott TJ, Thornton HR, Scott MTU, Dascombe BJ, Duthie GM. Differences between relative and absolute speed and metabolic thresholds in rugby league. Int J Sports Physiol Perform. 2018;13:298304.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Roe G, Halkier M, Beggs C, Till K, Jones B. The use of accelerometers to quantify collisions and running demands of rugby union match-play. Int J Perform Anal Sport. 2016;16:590601. doi:10.1080/24748668.2016.11868911

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate Data Analysis—A Global Perspective. Upper Saddle River, NJ: Pearson; 2009.

  • 34.

    Scott TJ, Black CR, Quinn J, Coutts AJ. Validity and reliability of the session-RPE method for quantifying training in Australian football: a comparison of the CR10 and CR100 scales. J Strength Cond Res. 2013;27:270276. PubMed ID: 22450253 doi:10.1519/JSC.0b013e3182541d2e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bartlett JD, O’Connor F, Pitchford N, Torres-Ronda L, Robertson SJ. Relationships between internal and external training load in team sports athletes: evidence for an individualised approach. Int J Sports Physiol Perform. 2017;12(2):230234. PubMed ID: 27194668 doi:10.1123/ijspp.2015-0791

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Thornton HR, Delaney JA, Duthie GM, Dascombe BJ. Importance of various training-load measures in injury incidence of professional rugby league athletes. Int J Sports Physiol Perform. 2017;12:819824.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Roe G, Darrall-Jones J, Till K, et al. The effect of physical contact on changes in fatigue markers following rugby union field-based training. Eur J Sport Sci. 2017;17(6):647655. PubMed ID: 28276911 doi:10.1080/17461391.2017.1287960

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 429 287 23
Full Text Views 20 8 2
PDF Downloads 15 7 1