Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To identify the impact of a leading teammate in front of a cyclist on psychological, physiological, biomechanical, and performance parameters during an uphill maximal effort. Methods: After familiarization, 12 well-trained competitive cyclists completed 2 uphill time trials (UTTs, 2.7 km at 7.4%) in randomized order; that is, 1 performed alone (control condition) and 1 followed a simulated teammate during the entire UTT (leader condition). Performance (UTT time) and mean power output (PO) were recorded for each UTT. For physiological parameters, mean heart rate and postexercise blood lactate concentration were recorded. Psychological parameters (rating of perceived exertion, pleasure, and attentional focus) were collected at the end of each trial. Results: Performance (UTT time) significantly improved by 4.2% (3.1%) in the leader condition, mainly due to drafting decrease of the aerodynamic drag (58% of total performance gains) and higher end spurt (+9.1% [9.1%] of mean PO in the last 10% of the UTT). However, heart rate and postexercise blood lactate concentration were not significantly different between conditions. From a psychological aspect, higher pleasure was observed in the leader condition (+41.1% [51.7%]), but attentional focus was not significantly different. Conclusions: The presence of a leading teammate during uphill cycling had a strong impact on performance, enabling higher speed for the same mean PO and greater end spurt. These results explain why the best teams competing for the general classification of the most prestigious and contested races like the Grand Tours tend to always protect their leader with teammates during decisive ascents.

The authors are with EA4660, C3S Health—Sport Dept, Sports University, Besancon, France. Grappe is also with Professional Cycling Team FDJ, Moussy le Vieux, France.

Ouvrard (ouvrard.to@gmail.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Kyle CR. Reduction of wind resistance and power output of racing cyclists and runners travelling in groups. Ergonomics. 1979;22(4):387397. doi:10.1080/00140137908924623

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Martin JCMilliken DLCobb JEMcFadden KLCoggan AR. Validation of a mathematical model for road cycling power. J Appl Biomech. 1998;14(3):276291. PubMed ID: 28121252 doi:10.1123/jab.14.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Millet GPTronche CGrappe F. Accuracy of indirect estimation of power output from uphill performance in cycling. Int J Sports Physiol Perform. 2014;9(5):777782. PubMed ID: 24306321 doi:10.1123/ijspp.2013-0320

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mognoni PDi Prampero PE. Gear, inertial work and road slopes as determinants of biomechanics in cycling. Eur J Appl Physiol. 2003;90(3–4):372376. PubMed ID: 14530979 doi:10.1007/s00421-003-0948-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Corbett JBarwood MJOuzounoglou AThelwell RDicks M. Influence of competition on performance and pacing during cycling exercise. Med Sci Sports Exerc. 2012;44(3):509515. PubMed ID: 21900846 doi:10.1249/MSS.0b013e31823378b1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Williams ELJones HSSparks SAMarchant DCMidgley AWMc Naughton LR. Competitor presence reduces internal attentional focus and improves 16.1 km cycling time trial performance. J Sci Med Sport. 2015;18(4):486491. PubMed ID: 25085709 doi:10.1016/j.jsams.2014.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Konings MJParkinson JZijdewind IHettinga FJ. Racing an opponent: alteration of pacing, performance, and muscle-force decline but not rating of perceived exertion. Int J Sports Physiol Perform. 2018;13(3):283289. PubMed ID: 28657853 doi:10.1123/ijspp.2017-0220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Brick NEMacIntyre TECampbell MJ. Attentional focus in endurance activity: new paradigms and future directions. Int Rev Sport Exerc Psychol. 2014;7(1):106134. doi:10.1080/1750984X.2014.885554

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Brick NECampbell MJMetcalfe RSMair JLMacintyre TE. Altering pace control and pace regulation: attentional focus effects during running. Med Sci Sports Exerc. 2016;48(5):879886. PubMed ID: 26673128 doi:10.1249/MSS.0000000000000843

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Marcora SMStaiano W. The limit to exercise tolerance in humans: mind over muscle? Eur J Appl Physiol. 2010;109(4):763770. PubMed ID: 20221773 doi:10.1007/s00421-010-1418-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392400. PubMed ID: 19224911 doi:10.1136/bjsm.2008.050799

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Baron BMoullan FDeruelle FNoakes TD. The role of emotions on pacing strategies and performance in middle and long duration sport events. Br J Sports Med. 2011;45(6):511517. PubMed ID: 19553226 doi:10.1136/bjsm.2009.059964

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Atkinson GPeacock OPassfield L. Variable versus constant power strategies during cycling time-trials: prediction of time savings using an up-to-date mathematical model. J Sports Sci. 2007;25(9):10011009. PubMed ID: 17497402 doi:10.1080/02640410600944709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Atkinson GPeacock OLaw M. Acceptability of power variation during a simulated hilly time trial. Int J Sports Med. 2007;28(2):157163. PubMed ID: 17133287 doi:10.1055/s-2006-924209

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Atkinson GBrunskill A. Pacing strategies during a cycling time trial with simulated headwinds and tailwinds. Ergonomics. 2000;43(10):14491460. PubMed ID: 11083127 doi:10.1080/001401300750003899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Swain DP. A model for optimizing cycling performance by varying power on hills and in wind. Med Sci Sports Exerc. 1997;29(8):11041108. PubMed ID: 9268969 doi:10.1097/00005768-199708000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cangley PPassfield LCarter HBailey M. The effect of variable gradients on pacing in cycling time-trials. Int J Sports Med. 2011;32(2):132136. PubMed ID: 21165802 doi:10.1055/s-0030-1268440

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wells MSMarwood S. Effects of power variation on cycle performance during simulated hilly time-trials. Eur J Sport Sci. 2016;16(8):912918. PubMed ID: 26949050 doi:10.1080/17461391.2016.1156162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Abbiss CRLaursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239252. PubMed ID: 18278984 doi:10.2165/00007256-200838030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Foster CSnyder ACThompson NNGreen MAFoley MSchrager M. Effect of pacing strategy on cycle time trial performance. Med Sci Sports Exerc. 1993;25(3):383388. PubMed ID: 8455455 doi:10.1249/00005768-199303000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wells MAtkinson GMarwood S. Effects of magnitude and frequency of variations in external power output on simulated cycling time-trial performance. J Sports Sci. 2013;31(15):16391646. PubMed ID: 23711074 doi:10.1080/02640414.2013.794299

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    De Pauw KRoelands BCheung SSde Geus BRietjens GMeeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Borg GLjunggren GCeci R. The increase of perceived exertion, aches and pain in the legs, heart rate and blood lactate during exercise on a bicycle ergometer. Eur J Appl Physiol Occup Physiol. 1985;54(4):343349. PubMed ID: 4065121 doi:10.1007/BF02337176

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    de Koning JJFoster CBakkum Aet al. Regulation of pacing strategy during athletic competition. PLoS ONE. 2011;6(1):15863. PubMed ID: 21283744 doi:10.1371/journal.pone.0015863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Thomas KStone MRThompson KGSt Clair Gibson AAnsley L. Reproducibility of pacing strategy during simulated 20-km cycling time trials in well-trained cyclists. Eur J Appl Physiol. 2012;112(1):223229. PubMed ID: 21533808 doi:10.1007/s00421-011-1974-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Gardner ASStephens SMartin DTLawton ELee HJenkins D. Accuracy of SRM and power tap power monitoring systems for bicycling. Med Sci Sports Exerc. 2004;36(7):12521258. PubMed ID: 15235334 doi:10.1249/01.MSS.0000132380.21785.03

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Guay FVallerand RJBlanchard C. On the assessment of situational intrinsic and extrinsic motivation: the Situational Motivation Scale (SIMS). Motiv Emot. 2000;24(3):175213. doi:10.1023/A:1005614228250

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Abbiss CRStraker LQuod MJMartin DTLaursen PB. Examining pacing profiles in elite female road cyclists using exposure variation analysis. Br J Sports Med. 2010;44(6):437442. PubMed ID: 18523040 doi:10.1136/bjsm.2008.047787

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Peiffer JJAbbiss CR. Influence of environmental temperature on 40 km cycling time-trial performance. Int J Sports Physiol Perform. 2011;6:208220. PubMed ID: 21725106 doi:10.1123/ijspp.6.2.208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ouvrard TPinot JGroslambert AGrappe F. Exposure Variation Analysis (EVA) method to monitor ability to optimally regulate exercise intensity of professional cyclists during official time-trial competition. J Sci Cycling. 2017;6(3):5859.

    • Search Google Scholar
    • Export Citation
  • 31.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 32.

    Hopkins WG. How to interpret changes in an athletic performance test. Sportscience. 2004;8(1):17.

  • 33.

    Pallant J. SPSS Survival Manual. 3rd ed. Berkshire, England: McGraw Hill; 2007.

  • 34.

    Stepto NKHawley JADennis SCHopkins WG. Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc. 1999;31(5):736741. PubMed ID: 10331896 doi:10.1097/00005768-199905000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Capostagno BLambert MILamberts RP. Standardized versus customized high-intensity training: effects on cycling performance. Int J Sports Physiol Perform. 2014;9(2):292301. PubMed ID: 23881116 doi:10.1123/ijspp.2012-0389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    McNaughton LRLovell RJSiegler JMidgley AWMoore LBentley DJ. The effects of caffeine ingestion on time trial cycling performance. Int J Sports Physiol Perform. 2008;3(2):157163. PubMed ID: 19208924 doi:10.1123/ijspp.3.2.157

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Quinlivan AIrwin CGrant GDet al. The effects of Red Bull energy drink compared with caffeine on cycling time-trial performance. Int J Sports Physiol Perform. 2015;10(7):897901. PubMed ID: 25710190 doi:10.1123/ijspp.2014-0481

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Barwood MJCorbett JWagstaff CRMcVeigh DThelwell RC. Improvement of 10-km time-trial cycling with motivational self-talk compared with neutral self-talk. Int J Sports Physiol Perform. 2015;10(2):166171. PubMed ID: 25010539 doi:10.1123/ijspp.2014-0059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Paton CDHopkins WG. Variation in performance of elite cyclists from race to race. Eur J Sport Sci. 2006;6(1):2531. doi:10.1080/17461390500422796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    St Clair Gibson ALambert EVRauch LHet al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705722. PubMed ID: 16869711 doi:10.2165/00007256-200636080-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Zajonc RB. Social facilitation. Science. 1965;149(3681):269274. PubMed ID: 14300526 doi:10.1126/science.149.3681.269

  • 42.

    Zajonc RB. Comprescence. In: Paulus PB ed. Psychology of Group Influence. Hillsdale, NJ: Lawrence Erlbaum Associates; 1980:3560.

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 295 295 25
Full Text Views 7 7 0
PDF Downloads 4 4 0
Altmetric Badge
PubMed
Google Scholar