Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To better understand the carbohydrate (CHO) requirement of Australian Football (AF) match play by quantifying muscle glycogen utilization during an in-season AF match. Methods: After a 24-h CHO-loading protocol of 8 and 2 g/kg in the prematch meal, 2 elite male forward players had biopsies sampled from m. vastus lateralis before and after participation in a South Australian Football League game. Player A (87.2 kg) consumed water only during match play, whereas player B (87.6 kg) consumed 88 g CHO via CHO gels. External load was quantified using global positioning system technology. Results: Player A completed more minutes on the ground (115 vs 98 min) and covered greater total distance (12.2 vs 11.2 km) than player B, although with similar high-speed running (837 vs 1070 m) and sprinting (135 vs 138 m). Muscle glycogen decreased by 66% in player A (pre: 656 mmol/kg dry weight [dw], post: 223 mmol/kg dw) and 24% in player B (pre: 544 mmol/kg dw, post: 416 mmol/kg dw). Conclusion: Prematch CHO loading elevated muscle glycogen concentrations (ie, >500 mmol/kg dw), the magnitude of which appears sufficient to meet the metabolic demands of elite AF match play. The glycogen cost of AF match play may be greater than in soccer and rugby, and CHO feeding may also spare muscle glycogen use. Further studies using larger sample sizes are now required to quantify the interindividual variability of glycogen cost of match play (including muscle and fiber-type-specific responses), as well examining potential metabolic and ergogenic effects of CHO feeding.

Routledge, Erskine, Close, and Morton are with the Research Inst for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom. Routledge, Graham, and Burgess are with Port Adelaide Football Club, Alberton, SA, Australia. Leckey, Garnham, and Burke are with the Exercise and Nutrition Research Program, Mary MacKillop Inst for Health Research, Australian Catholic University, Melbourne, VIC, Australia. Lee is with the College of Sport & Exercise Science, Victoria University, Melbourne, VIC, Australia. Erskine is also with the Inst of Sport, Exercise and Health, University College London, London, United Kingdom.

Morton (J.P.Morton@ljmu.ac.uk) is corresponding author.
  • 1.

    Anderson L, Orme P, Di Michele R, et al. Quantification of training load during one-, two- and three-game week schedules in professional soccer players from the English Premier League: implications for carbohydrate periodisation. J Sports Sci. 2016;34(13):1250–1259. PubMed ID: 26536538 doi:10.1080/02640414.2015.1106574

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Varley MC, Gabbett T, Aughey RJ. Activity profiles of professional soccer, rugby league and Australian Football match play. J Sports Sci. 2014;32(20):1858–1866. PubMed ID: 24016304 doi:10.1080/02640414.2013.823227

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Coutts AJ, Kempton T, Sullivan C, Bilsborough J, Cordy J, Rampinini E. Metabolic power and energetic costs of professional Australian Football match-play. J Sci Med Sport. 2015;18(2):219–224. PubMed ID: 24589369 doi:10.1016/j.jsams.2014.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mujika I, Burke LM. Nutrition in team sports. Ann Nutr Metab. 2010;57(2):26–35. PubMed ID: 21346334 doi:10.1159/000322700

  • 5.

    Gunnarsson TP, Bendiksen M, Bischoff R, et al. Effect of whey protein- and carbohydrate-enriched diet on glycogen resynthesis during the first 48 h after a soccer game. Scand J Med Sci Sports. 2013;23(4):508–515. PubMed ID: 22107250 doi:10.1111/j.1600-0838.2011.01418.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bradley WJ, Morehen JC, Haigh J, et al. Muscle glycogen utilisation during rugby match play: effects of pre-game carbohydrate. J Sci Med Sport. 2016;19(12):1033–1038. PubMed ID: 27134132 doi:10.1016/j.jsams.2016.03.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):1165–1174. PubMed ID: 16775559 doi:10.1249/01.mss.0000222845.89262.cd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Saltin B. Metabolic fundamentals in exercise. Med Sci Sports. 1973;5(3):137–146. PubMed ID: 4270581

  • 9.

    Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–528. PubMed ID: 26920240 doi:10.1016/j.jand.2015.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bangsbo J, Norregaard L, Thorsoe F. The effect of carbohydrate diet on intermittent exercise performance. Int J Sports Med. 1992;13(2):152–157. PubMed ID: 1555905 doi:10.1055/s-2007-1021247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wisbey B, Montgomery PG, Pyne DB, Rattray B. Quantifying movement demands of AFL football using GPS tracking. J Sci Med Sport. 2010;13:531–536. PubMed ID: 19897414 doi:10.1016/j.jsams.2009.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hargreaves M, McConell G, Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J Appl Physiol. 1995;78(1):288–292. PubMed ID: 7713825 doi:10.1152/jappl.1995.78.1.288

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):831–838. PubMed ID: 6373687

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Tsintzas OK, Williams C, Boobis L, Greenhaff P. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. J Physiol. 1995;489:243–250. PubMed ID: 8583408 doi:10.1113/jphysiol.1995.sp021046

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Nielsen J, Krustrup P, Nybo L, et al. Skeletal muscle glycogen content and particle size of distinct subcellular localizations in the recovery period after a high-level soccer match. Eur J Appl Physiol. 2012;112(10):3559–3567. PubMed ID: 22323299 doi:10.1007/s00421-012-2341-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 161 161 21
Full Text Views 34 34 4
PDF Downloads 25 25 7