Predicting Trail-Running Performance With Laboratory Exercise Tests and Field-Based Results

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Trail running is a complex sport, and performance prediction is challenging. The aim was to evaluate 3 standard laboratory exercise tests in trail runners and correlate measurements to the race time of a trail competition evaluating its predictive power. Methods: Nine competitive male trail runners (mean age: 31 [5.8] y) completed 3 different laboratory exercise tests (step, ramp, and trail tests) for determination of maximal oxygen uptake (VO2max), vVO2max, ventilatory (VT) and lactate thresholds (LT), mechanical power output, and running economy (RE), followed by a 31-km trail race. Runners had previously participated in the same race (previous year) and finished in the top 2%. Finishing times (dependent value) were tested in multiple-regression analysis with different independent value combinations. Results: Linear-regression analysis revealed that variables measured during step and ramp tests significantly predicted performance. Step-test variables (speed at individual anaerobic threshold 16.4 [1.7] km/h and RE 12 km/h in %VO2max 65.6% [5.4%]) showed the highest performance prediction (R2 = .651, F2,6 = 5.60, P = .043), followed by the ramp test (vVO2max 20.3 [1.3] km/h; R2 = .477, F1,7 = 6.39, P = .04) and trail test (maximal power 3.9 [0.5] W/kg, VO2max 63.0 [4.8] mL O2·kg−1·min−1, vVT1 11.9 [0.7] km/h; R2 = .68, F3,5 = 3.52, P = .11). Adding race time from the preceding year to the step test improved the predictive power of the model (R2 = .988, F3,5 = 66.51, P < .001). Conclusions: The graded exercise test (VO2max, individual anaerobic threshold, and RE) most accurately predicted a 31.1-km trail-running performance. Combining submaximal intensities (individual anaerobic threshold and RE) with the previous year’s race time of that specific event increased the predictive power of the model to 99%.

Scheer, Janssen, Vieluf, and Heitkamp are with the Inst of Sports Medicine, University of Paderborn, Paderborn, Germany. Scheer is also with the Ultra Sports Science Foundation, Pierre-Benite, France.

Scheer (volkerscheer@yahoo.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Barnes KRKilding AE. Running economy: measurement, norms, and determining factors. Sports Med Open. 2015;1(1):8. PubMed ID: 27747844 doi:10.1186/s40798-015-0007-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ehrström STartaruga MPEasthope CSBrisswalter JMorin JBVercruyssen F. Short trail running race: beyond the classic model for endurance running performance. Med Sci Sports Exerc. 2018;50(3):580588. PubMed ID: 29077639 doi:10.1249/MSS.0000000000001467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vernillo GGiandolini MEdwards WBet al. Biomechanics and physiology of uphill and downhill running. Sports Med. 2017;47(4):615629. PubMed ID: 27501719 doi:10.1007/s40279-016-0605-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Balducci PClémençon MTrama RBlache YHautier C. Performance factors in a mountain ultramarathon. Int J Sports Med. 2017;38(11):819826. PubMed ID: 28799161 doi:10.1055/s-0043-112342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Fornasiero ASavoldelli AFruet DBoccia GPellegrini BSchena F. Physiological intensity profile, exercise load and performance predictors of a 65-km mountain ultra-marathon. J Sports Sci. 2018;36(11):12871295. PubMed ID: 28869746 doi:10.1080/02640414.2017.1374707

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Scheer VRamme KReinsberger CHeitkamp HC. VO2max testing in trail runners: is there a specific exercise test protocol? Int J Sports Med. 2018;39(6):456461. PubMed ID: 29665614 doi:10.1055/a-0577-4851

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Vernillo GMillet GPMillet GY. Does the running economy really increase after ultra-marathons? Front Physiol. 2017;8:783. PubMed ID: 29062284 doi:10.3389/fphys.2017.00783

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Vernillo GSavoldelli AZignoli Aet al. Energy cost and kinematics of level, uphill and downhill running: fatigue-induced changes after a mountain ultramarathon. J Sports Sci. 2015;33(19):19982005. PubMed ID: 25751128 doi:10.1080/02640414.2015.1022870

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Vernillo GSavoldelli AZignoli Aet al. Influence of the world’s most challenging mountain ultra-marathon on energy cost and running mechanics. Eur J Appl Physiol. 2014;114(5):929939. PubMed ID: 24477570 doi:10.1007/s00421-014-2824-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Millet GYHoffman MDMorin JB. Sacrificing economy to improve running performance—a reality in the ultramarathon? J Appl Physiol. 2012;113(3):507509. PubMed ID: 22492933 doi:10.1152/japplphysiol.00016.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Millet GP. Economy is not sacrificed in ultramarathon runners. J Appl Physiol. 2012;113(4):686. PubMed ID: 22896682 doi:10.1152/japplphysiol.00642.2012

  • 12.

    Faude OKindermann WMeyer T. Lactate threshold concepts: how valid are they? Sports Med. 2009;39(6):469490. PubMed ID: 19453206 doi:10.2165/00007256-200939060-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 224 224 113
Full Text Views 8 8 1
PDF Downloads 4 4 2
Altmetric Badge
PubMed
Google Scholar
Cited By