Running Economy: Neuromuscular and Joint-Stiffness Contributions in Trained Runners

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Nicholas Tam
Search for other papers by Nicholas Tam in
Current site
Google Scholar
PubMed
Close
,
Ross Tucker
Search for other papers by Ross Tucker in
Current site
Google Scholar
PubMed
Close
,
Jordan Santos-Concejero
Search for other papers by Jordan Santos-Concejero in
Current site
Google Scholar
PubMed
Close
,
Danielle Prins
Search for other papers by Danielle Prins in
Current site
Google Scholar
PubMed
Close
, and
Robert P. Lamberts
Search for other papers by Robert P. Lamberts in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: It is debated whether running biomechanics make good predictors of running economy, with little known about the neuromuscular and joint-stiffness contributions to economical running gait. Purpose: To understand the relationship between certain neuromuscular and spatiotemporal biomechanical factors associated with running economy. Methods: Thirty trained runners performed a 6-min constant-speed running set at 3.3 m·s−1, where oxygen consumption was assessed. Overground running trials were also performed at 3.3 m·s−1 to assess kinematics, kinetics, and muscle activity. Spatiotemporal gait variables, joint stiffness, preactivation, and stance-phase muscle activity (gluteus medius, rectus femoris, biceps femoris, peroneus longus, tibialis anterior, and gastrocnemius lateralis and medius) were variables of specific interest and thus determined. In addition, preactivation and ground contact of agonist–antagonist coactivation were calculated. Results: More economical runners presented with short ground-contact times (r = .639, P < .001) and greater stride frequencies (r = −.630, P < .001). Lower ankle and greater knee stiffness were associated with lower oxygen consumption (r = .527, P = .007 and r = .384, P = .043, respectively). Only  lateral gastrocnemius–tibialis anterior coactivation during stance was associated with lower oxygen cost of transport (r = .672, P < .0001). Conclusions: Greater muscle preactivation and biarticular muscle activity during stance were associated with more economical runners. Consequently, trained runners who exhibit greater neuromuscular activation prior to and during ground contact, in turn optimizing spatiotemporal variables and joint stiffness, will be the most economical runners.

Tam, Prins, and Lamberts are with the Div of Exercise Science and Sports Medicine, Dept of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. Tam is also with the Dept of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain. Tucker is with World Rugby, Dublin, Ireland. Santos-Concejero is with the Dept of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain. Lamberts is also with the Inst of Sport and Exercise Medicine, Div of Orthopaedic Surgery, Dept of Surgery, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.

Tam (nicholas.tam@ehu.es) is corresponding author.

Supplementary Materials

    • Supplementary Figure (PDF 318 KB)
  • Collapse
  • Expand
  • 1.

    Foster C, Lucia A. Running economy: the forgotten factor in elite performance. Sports Med. 2007;37(4–5):316319. PubMed ID: 17465597 doi:10.2165/00007256-200737040-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lacour JR, Bourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115(4):651673. PubMed ID: 25681108 doi:10.1007/s00421-015-3115-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Barnes KR, Kilding AE. Running economy: measurement, norms, and determining factors. Sport Med Open. 2015;1(1):8. PubMed ID: 27747844 doi:10.1186/s40798-015-0007-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Moore IS. Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy. Sport Med. 2016;46(6):793807. PubMed ID: 26816209 doi:10.1007/s40279-016-0474-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Santos-Concejero J, Tam N, Coetzee DR, Oliván J, Noakes TD, Tucker R. Are gait characteristics and ground reaction forces related to energy cost of running in elite Kenyan runners? J Sports Sci. 2017;35(6):531538. PubMed ID: 27157507 doi:10.1080/02640414.20161175655

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chapman RF, Laymon AS, Wilhite DP, McKenzie JM, Tanner DA, Stager JM. Ground contact time as an indicator of metabolic cost in elite distance runners. Med Sci Sports Exerc. 2012;44(5):917925. PubMed ID: 22089481 doi:10.1249/MSS.0b013e3182400520

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Santos-Concejero J, Granados C, Irazusta J, et al. Differences in ground contact time explain the less efficient running economy in North African runners. Biol Sport. 2013;30(3):181187. PubMed ID: 24744486 doi:10.5604/20831862.1059170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Moore IS, Jones AM, Dixon SJ. Mechanisms for improved running economy in beginner runners. Med Sci Sports Exerc. 2012;44(9):17561763. PubMed ID: 22525760 doi:10.1249/MSS.0b013e318255a727

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Folland JP, Allen SJ, Black MI, Handsaker JC, Forrester SE. Running technique is an important component of running economy and performance. Med Sci Sports Exerc. 2017;49(7):14121423. PubMed ID: 28263283 doi:10.1249/MSS.0000000000001245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Di Michele R, Merni F. The concurrent effects of strike pattern and ground-contact time on running economy. J Sci Med Sport. 2014;17(4):414418. PubMed ID: 23806876 doi:10.1016/j.jsams.2013.05.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Perl DP, Daoud AI, Lieberman DE. Effects of footwear and strike type on running economy. Med Sci Sports Exerc. 2012;44(7):13351343. PubMed ID: 22217565 doi:10.1249/MSS.0b013e318247989e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Santos-Concejero J, Tam N, Granados C, et al. Interaction effects of stride angle and strike pattern on running economy. Int J Sports Med. 2014;35(13):11181123. PubMed ID: 24977947 doi:10.1055/s-0034-1372640

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Butler RJ, Crowell HP, Davis IM. Lower extremity stiffness: implications for performance and injury. Clin Biomech. 2003;18(6):511517. PubMed ID: 12828900 doi:10.1016/S0268-0033(03)00071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Santos-Concejero J, Tam N, Granados C, et al. Stride angle as a novel indicator of running economy in well-trained runners. J Strength Cond Res. 2014;28(7):18891895. PubMed ID: 24276308 doi:10.1519/JSC.0000000000000325

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tam N, Santos-Concejero J, Coetzee DR, Noakes TD, Tucker R. Muscle co-activation and its influence on running performance and risk of injury in elite Kenyan runners. J Sports Sci. 2017;35(2):175181. PubMed ID: 26982259 doi:10.1080/02640414.2016.1159717

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14(4):321327. PubMed ID: 8887211 doi:10.1080/02640419608727717

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105(2):136144. PubMed ID: 6865355 doi:10.1115/1.3138397

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lieberman DE, Venkadesan M, Werbel WA, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010;463(7280):531535. PubMed ID: 20111000 doi:10.1038/nature08723

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hamill J, Gruber AH, Derrick TR. Lower extremity joint stiffness characteristics during running with different footfall patterns. Eur J Sport Sci. 2014;14(2):130136. PubMed ID: 24533519 doi:10.1080/17461391.2012.728249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Albertus-Kajee Y, Tucker R, Derman W, Lamberts RP, Lambert MI. Alternative methods of normalising EMG during running. J Electromyogr Kinesiol. 2011;21(4):579586. PubMed ID: 21531148 doi:10.1016/j.jelekin.2011.03.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kellis E, Zafeiridis A, Amiridis IG. Muscle coactivation before and after the impact phase of running following isokinetic fatigue. J Athl Train. 2011;46(1):1119. PubMed ID: 21214346 doi:10.4085/1062-6050-46.1.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Boyer KA, Nigg BM. Muscle activity in the leg is tuned in response to impact force characteristics. J Biomech. 2004;37(10):15831588. PubMed ID: 15336933 doi:10.1016/j.jbiomech.2004.01.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hamner SR, Seth A, Delp SL. Muscle contributions to propulsion and support during running. J Biomech. 2010;43(14):27092716. PubMed ID: 20691972 doi:10.1016/j.jbiomech.2010.06.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kyröläinen H, Belli A, Komi PV. Biomechanical factors affecting running economy. Med Sci Sports Exerc. 2001;33(8):13301337. PubMed ID: 11474335 doi:10.1097/00005768-200108000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hobara H, Kimura K, Omuro K, et al. Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects. J Sci Med Sport. 2010;13(1):106111. PubMed ID: 18951842 doi:10.1016/j.jsams.2008.08.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Heise G, Shinohara M, Binks L. Biarticular leg muscles and links to running economy. Int J Sports Med. 2008;29:688691. PubMed ID: 18085504 doi:10.1055/s-2007-989372

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Van Ingen Schenau GJ. From rotation to translation: constraints on multi-joint movements and the unique action of bi-articular muscles. Hum Mov Sci. 1989;8(4):301337. doi:10.1016/0167-9457(89)90037-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Heise GD, Morgan DW, Hough H, Craib M. Relationships between running economy and temporal EMG characteristics of bi-articular leg muscles. Int J Sports Med. 1996;17(2):128133. PubMed ID: 8833715 doi:10.1055/s-2007-972820

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Black MI, Handsaker JC, Allen SJ, Forrester SE, Folland JP. Is there an optimum speed for economical running? Int J Sports Physiol Perform. 2018;13(1):7581. PubMed ID: 28459289 doi:10.1123/ijspp.2017-0015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Nummela A, Keränen T, Mikkelsson LO. Factors related to top running speed and economy. Int J Sports Med. 2007;28(8):655661. PubMed ID: 17549657 doi:10.1055/s-2007-964896

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Tartaruga MP, Brisswalter J, Peyré-Tartaruga LA, et al. The relationship between running economy and biomechanical variables in distance runners. Res Q Exerc Sport. 2012;83(3):367375. PubMed ID: 22978185 doi:10.1080/02701367.2012.10599870

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4168 1520 40
Full Text Views 125 42 6
PDF Downloads 129 71 6